Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Doubled Haploidy Techniques in Wheat (Triticum aestivum L.): An Overview

Doubled Haploidy Techniques in Wheat (Triticum aestivum L.): An Overview Wheat crop has a critical role in current food system and also in the future global food security. Global wheat demand in 2010 reached 666 million metric tons (MMT). If the demand growth rate remains constant, it has been predicted that the global wheat consumption would surpass 880 MMT by 2050. Fulfilling this demand needs new and more efficient wheat breeding methodologies. Conventional breeding has led to the development of number of varieties, but with the changing climatic regime accompanied with fast and continuous changing nature of biotic and abiotic stresses there is an urgent need to fasten the breeding methods. Hence, biotechnological tool like DH becomes an important weapon. The production of haploid plants from hybrids, followed by chromosome doubling will provide wheat breeder with a mean to accelerate the development of true breeding lines. Doubled haploid (DH) populations have lot of applications in plant breeding like cultivar and germplasm development, transferring traits from wild types, studying components of quantitative genetics and whole genome mapping. Among different DH production techniques, anther culture and Hordeum bulbosum have stronger genotypic specificity whereby, wide hybridization comes up with a solution. Amongst various wide hybridization techniques, DH production via Imperata cylindrica has been found to be the most economical and efficient. The genotypic nonspecific production lacks somaclonal variation and albino plants development alongwith having higher regeneration rate coupled with lower cost. Thus, integration of I. cylindrica mediated DH system with conventional breeding will be instrumental for future wheat breeding programmes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Springer Journals

Loading next page...
 
/lp/springer-journals/doubled-haploidy-techniques-in-wheat-triticum-aestivum-l-an-overview-09txXoFwWL

References (145)

Publisher
Springer Journals
Copyright
Copyright © 2017 by The National Academy of Sciences, India
Subject
Life Sciences; Life Sciences, general; Behavioral Sciences; Plant Biochemistry; Nucleic Acid Chemistry
ISSN
0369-8211
eISSN
2250-1746
DOI
10.1007/s40011-017-0870-z
Publisher site
See Article on Publisher Site

Abstract

Wheat crop has a critical role in current food system and also in the future global food security. Global wheat demand in 2010 reached 666 million metric tons (MMT). If the demand growth rate remains constant, it has been predicted that the global wheat consumption would surpass 880 MMT by 2050. Fulfilling this demand needs new and more efficient wheat breeding methodologies. Conventional breeding has led to the development of number of varieties, but with the changing climatic regime accompanied with fast and continuous changing nature of biotic and abiotic stresses there is an urgent need to fasten the breeding methods. Hence, biotechnological tool like DH becomes an important weapon. The production of haploid plants from hybrids, followed by chromosome doubling will provide wheat breeder with a mean to accelerate the development of true breeding lines. Doubled haploid (DH) populations have lot of applications in plant breeding like cultivar and germplasm development, transferring traits from wild types, studying components of quantitative genetics and whole genome mapping. Among different DH production techniques, anther culture and Hordeum bulbosum have stronger genotypic specificity whereby, wide hybridization comes up with a solution. Amongst various wide hybridization techniques, DH production via Imperata cylindrica has been found to be the most economical and efficient. The genotypic nonspecific production lacks somaclonal variation and albino plants development alongwith having higher regeneration rate coupled with lower cost. Thus, integration of I. cylindrica mediated DH system with conventional breeding will be instrumental for future wheat breeding programmes.

Journal

Proceedings of the National Academy of Sciences, India Section B: Biological SciencesSpringer Journals

Published: May 9, 2017

There are no references for this article.