Access the full text.
Sign up today, get DeepDyve free for 14 days.
(Keeling, M.J., Rohani,P.: Modeling Infectious Diseases in Humans and Animals. Princeton University Press (2008))
Keeling, M.J., Rohani,P.: Modeling Infectious Diseases in Humans and Animals. Princeton University Press (2008)Keeling, M.J., Rohani,P.: Modeling Infectious Diseases in Humans and Animals. Princeton University Press (2008), Keeling, M.J., Rohani,P.: Modeling Infectious Diseases in Humans and Animals. Princeton University Press (2008)
Xin-You Meng, N. Qin, Hai-Feng Huo (2018)
Dynamics analysis of a predator–prey system with harvesting prey and disease in prey speciesJournal of Biological Dynamics, 12
O. Diekmann, J. Heesterbeek (2000)
Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation
K. Schneider (1982)
Hassard, B. D. / Kazarinoff, N. D. / Wan, Y.-H., Theory and Applications of Hopf Bifurcation. London Mathematical Society Lecture Note Series 41. Cambridge, Cambridge University Press 1981. 320 S., £ 15.00 A P/B. ISBN 0-521-23158-2Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik, 62
B. Hassard, N. Kazarinoff, Y. Wan (1981)
Theory and applications of Hopf bifurcation
A. Flahault, R. Castañeda, I. Bolon (2016)
Climate change and infectious diseasesPublic Health Reviews, 37
(Rodó, X., Pascual, M., Doblas-Reyes, F.J., Gershunov, A., Stone, D.A., Giorgi, F., Hudson, P.J., Kinter, J., Rodríguez-Arias, M.À., Stenseth, N.C., Alonso, D., García-Serrano, J., Dobson, A.P.: Climate change and infectious diseases: can we meet the needs for better prediction? Clim. Change. 118, 625–640 (2013). 10.1007/s10584-013-0744-1)
Rodó, X., Pascual, M., Doblas-Reyes, F.J., Gershunov, A., Stone, D.A., Giorgi, F., Hudson, P.J., Kinter, J., Rodríguez-Arias, M.À., Stenseth, N.C., Alonso, D., García-Serrano, J., Dobson, A.P.: Climate change and infectious diseases: can we meet the needs for better prediction? Clim. Change. 118, 625–640 (2013). 10.1007/s10584-013-0744-1Rodó, X., Pascual, M., Doblas-Reyes, F.J., Gershunov, A., Stone, D.A., Giorgi, F., Hudson, P.J., Kinter, J., Rodríguez-Arias, M.À., Stenseth, N.C., Alonso, D., García-Serrano, J., Dobson, A.P.: Climate change and infectious diseases: can we meet the needs for better prediction? Clim. Change. 118, 625–640 (2013). 10.1007/s10584-013-0744-1, Rodó, X., Pascual, M., Doblas-Reyes, F.J., Gershunov, A., Stone, D.A., Giorgi, F., Hudson, P.J., Kinter, J., Rodríguez-Arias, M.À., Stenseth, N.C., Alonso, D., García-Serrano, J., Dobson, A.P.: Climate change and infectious diseases: can we meet the needs for better prediction? Clim. Change. 118, 625–640 (2013). 10.1007/s10584-013-0744-1
JA Patz, AK Githeko, JP McCarty, S Hussein, U Confalonieri, N De Wet (2003)
Climate change and infectious diseasesClim. Change Human Health Risks Resp., 6
M. Keeling, P. Rohani (2007)
Modeling Infectious Diseases in Humans and Animals
P. Driessche, James Watmough (2002)
Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission.Mathematical biosciences, 180
(Brauer, F., Driessche, P.V., Wu, J.: Mathematical Epidemiology. Springer, Berlin (2008). 10.1007/978-3-540-78911-6)
Brauer, F., Driessche, P.V., Wu, J.: Mathematical Epidemiology. Springer, Berlin (2008). 10.1007/978-3-540-78911-6Brauer, F., Driessche, P.V., Wu, J.: Mathematical Epidemiology. Springer, Berlin (2008). 10.1007/978-3-540-78911-6, Brauer, F., Driessche, P.V., Wu, J.: Mathematical Epidemiology. Springer, Berlin (2008). 10.1007/978-3-540-78911-6
(Linton, N.M., Kobayashi, T., Yang, Y., Hayashi, K., Akhmetzhanov, A.R., Jung, S.M., Yuan, B., Kinoshita, R., Nishiura, H.: Incubation period and other epidemiological characteristics of 2019 novel coronavirus infections with right truncation: a statistical analysis of publicly available case data. J. Clin. Med. 9(2), 538 (2020). 10.3390/jcm9020538)
Linton, N.M., Kobayashi, T., Yang, Y., Hayashi, K., Akhmetzhanov, A.R., Jung, S.M., Yuan, B., Kinoshita, R., Nishiura, H.: Incubation period and other epidemiological characteristics of 2019 novel coronavirus infections with right truncation: a statistical analysis of publicly available case data. J. Clin. Med. 9(2), 538 (2020). 10.3390/jcm9020538Linton, N.M., Kobayashi, T., Yang, Y., Hayashi, K., Akhmetzhanov, A.R., Jung, S.M., Yuan, B., Kinoshita, R., Nishiura, H.: Incubation period and other epidemiological characteristics of 2019 novel coronavirus infections with right truncation: a statistical analysis of publicly available case data. J. Clin. Med. 9(2), 538 (2020). 10.3390/jcm9020538, Linton, N.M., Kobayashi, T., Yang, Y., Hayashi, K., Akhmetzhanov, A.R., Jung, S.M., Yuan, B., Kinoshita, R., Nishiura, H.: Incubation period and other epidemiological characteristics of 2019 novel coronavirus infections with right truncation: a statistical analysis of publicly available case data. J. Clin. Med. 9(2), 538 (2020). 10.3390/jcm9020538
J. Cui, Yonghong Sun, Huaiping Zhu (2007)
The Impact of Media on the Control of Infectious DiseasesJournal of Dynamics and Differential Equations, 20
V. Capasso (1993)
Mathematical Structures of Epidemic Systems
J. Irwin (1958)
MATHEMATICAL EPIDEMIOLOGYBritish Medical Journal, 1
X. Rodó, M. Pascual, F. Doblas-Reyes, A. Gershunov, D. Stone, F. Giorgi, P. Hudson, James Kinter, M. Rodríguez-Arias, N. Stenseth, David Alonso, J. García-Serrano, A. Dobson (2013)
Climate change and infectious diseases: Can we meet the needs for better prediction?Climatic Change, 118
R. Schwarzenbach, T. Egli, T. Hofstetter, U. Gunten, B. Wehrli (2010)
Global Water Pollution and Human HealthAnnual Review of Environment and Resources, 35
Natalie Linton, Tetsuro Kobayashi, Yichi Yang, Katsuma Hayashi, A. Akhmetzhanov, Sung-mok Jung, Baoyin Yuan, Ryo Kinoshita, H. Nishiura (2020)
Incubation Period and Other Epidemiological Characteristics of 2019 Novel Coronavirus Infections with Right Truncation: A Statistical Analysis of Publicly Available Case DataJournal of Clinical Medicine, 9
Zhien Ma, Jia Li (2009)
Dynamical Modeling and Analysis of Epidemics
(Kumari, N., Sharma, S.: Modeling the dynamics of infectious disease under the inuence of environmental pollution. Int. J. Appl. Comput. Math. 4(84) (2018). 10.1007/s40819-018-0514-x)
Kumari, N., Sharma, S.: Modeling the dynamics of infectious disease under the inuence of environmental pollution. Int. J. Appl. Comput. Math. 4(84) (2018). 10.1007/s40819-018-0514-xKumari, N., Sharma, S.: Modeling the dynamics of infectious disease under the inuence of environmental pollution. Int. J. Appl. Comput. Math. 4(84) (2018). 10.1007/s40819-018-0514-x, Kumari, N., Sharma, S.: Modeling the dynamics of infectious disease under the inuence of environmental pollution. Int. J. Appl. Comput. Math. 4(84) (2018). 10.1007/s40819-018-0514-x
C. McCluskey (2010)
Complete global stability for an SIR epidemic model with delay — Distributed or discreteNonlinear Analysis-real World Applications, 11
(Hassard, B.D., Kazarinoff, N.D., Wan, Y.H.: Theory and Applications of Hopf Bifurcation. Cambridge University Press (1981). 10.1002/zamm.19820621221)
Hassard, B.D., Kazarinoff, N.D., Wan, Y.H.: Theory and Applications of Hopf Bifurcation. Cambridge University Press (1981). 10.1002/zamm.19820621221Hassard, B.D., Kazarinoff, N.D., Wan, Y.H.: Theory and Applications of Hopf Bifurcation. Cambridge University Press (1981). 10.1002/zamm.19820621221, Hassard, B.D., Kazarinoff, N.D., Wan, Y.H.: Theory and Applications of Hopf Bifurcation. Cambridge University Press (1981). 10.1002/zamm.19820621221
Nitu Kumari, Sandeep Sharma (2016)
DOES WATER DISINFECTANT PLAY A SUPPORTIVE ROLE IN THE SPREAD OF INFECTIOUS DISEASE? A MATHEMATICAL STUDYNatural Resource Modeling, 29
A. Dobson (2009)
Climate variability, global change, immunity, and the dynamics of infectious diseases.Ecology, 90 4
H. Hethcote (2000)
The Mathematics of Infectious DiseasesSIAM Rev., 42
Nitu Kumari, Sandeep Sharma (2018)
Modeling the Dynamics of Infectious Disease Under the Influence of Environmental PollutionInternational Journal of Applied and Computational Mathematics, 4
Yongli Song, Junjie Wei (2004)
Bifurcation analysis for Chen's system with delayed feedback and its application to control of chaosChaos Solitons & Fractals, 22
K. Cooke (1979)
Stability analysis for a vector disease modelRocky Mountain Journal of Mathematics, 9
P. Sartwell (1966)
The incubation period and the dynamics of infectious disease.American journal of epidemiology, 83 2
K. Lafferty, R. Holt (2003)
How should environmental stress affect the population dynamics of diseaseEcology Letters, 6
(Song, Y.L., Wei, J.J.: Bifurcation analysis for Chen’s system with delayed feedback and its application to control of chaos. Chaos Solit. Fract. 22(1), 75–91 (2004). 10.1016/j.chaos.2003.12.075)
Song, Y.L., Wei, J.J.: Bifurcation analysis for Chen’s system with delayed feedback and its application to control of chaos. Chaos Solit. Fract. 22(1), 75–91 (2004). 10.1016/j.chaos.2003.12.075Song, Y.L., Wei, J.J.: Bifurcation analysis for Chen’s system with delayed feedback and its application to control of chaos. Chaos Solit. Fract. 22(1), 75–91 (2004). 10.1016/j.chaos.2003.12.075, Song, Y.L., Wei, J.J.: Bifurcation analysis for Chen’s system with delayed feedback and its application to control of chaos. Chaos Solit. Fract. 22(1), 75–91 (2004). 10.1016/j.chaos.2003.12.075
C. Castillo-Chavez, B. Song (2004)
Dynamical models of tuberculosis and their applications.Mathematical biosciences and engineering : MBE, 1 2
Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations
Emerging infectious diseases pose serious threat to human population. Studies suggest that there is correlation between population’s pollution status and emerging infectious diseases. We propose a delayed SIS model to examine the effects of environmental contamination on human health, which can lead to the spread of numerous diseases. A threshold parameter called basic reproduction number has been obtained for the system. Within the sight of time delay, stability analysis for equilibrium points has been obtained. The existence of Hopf bifurcation around endemic equilibrium point pertaining to time delay as a critical parameter is observed. Our study suggests that pollution can have detrimental effects on the spread of disease. Analytical results are supported by numerical simulations.
ANNALI DELL UNIVERSITA DI FERRARA – Springer Journals
Published: May 1, 2023
Keywords: SIS model; Infectious disease; Time delay; Basic reproduction number; Hopf-bifurcation; Stability analysis; 34D20; 92B05; 92D25
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.