Access the full text.
Sign up today, get DeepDyve free for 14 days.
Abstract Flexural retrofitting of structures using glass/carbon fibre reinforced polymer (GFRP/CFRP) has been widely investigated. However, comparison on the effects of GFRP/CFRP flexural retrofitting at plastic hinges on reducing the potential seismic damage of reinforced concrete (RC) structures is hardly found in the literature and is thus aimed by this study. Toward this aim, two-, four- and eight-storey RC frames were chosen to represent different building structures. These frames were then retrofitted by CFRP/GFRP bonded sheets to increase flexural capacities of beams and columns at plastic hinge regions. The original, CFRP and GFRP retrofitted frames were modelled using nonlinear hysteresis elements. After verification, nonlinear time-history analyses of those frames under various seismic intensities were carried out, followed by cumulative damage analyses. Damage states of original, CFRP and GFRP retrofitted frames were compared with one another. The obtained comparison results reaffirmed the effectiveness of CFRP and GFRP flexural retrofitting. More importantly, obtained results indicated that CFRP is more effective than GFRP on reducing seismic damage of RC structures when they are employed for flexural retrofitting. These outcomes can help in deciding on the FRP type to be used for flexural retrofitting of RC structures.
"Asian Journal of Civil Engineering" – Springer Journals
Published: Dec 1, 2019
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.