Access the full text.
Sign up today, get DeepDyve free for 14 days.
Finite transducers, two-tape automata, and biautomata are related computational models descended from the concept of finite-state automaton. In these models an automaton controls two heads that read or write symbols on the tapes in the one-way mode. The computations of these three types of automata show many common features, and it is surprising that the methods for analyzing the behavior of automata developed for one of these models do not find suitable utilization in other models. The goal of this paper is to develop a uniform technique for building polynomial-time equivalence checking algorithms for some classes of automata (finite transducers, two-tape automata, biautomata, and single-state pushdown automata) which exhibit certain features of the deterministic or unambiguous behavior. This new technique reduces the equivalence checking of automata to solvability checking of certain systems of equations over the semirings of languages or transductions. It turns out that such a checking can be performed by the variable elimination technique which relies on some combinatorial and algebraic properties of prefix-free regular languages. The main results obtained in this paper are as follows: 1. Using the algebraic approach a new algorithm for checking the equivalence of states of deterministic finite automata is constructed; time complexity of this algorithm is \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$O(n\;\text{log}\;n)$$\end{document}. 2. A new class of prefix-free finite transducers is distinguished and it is shown that the developed algebraic approach provides the equivalence checking of transducers from this class in quadratic time (for real-time prefix-free transducers) and cubic time (for prefix-free transducers with \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\varepsilon $$\end{document}-transitions) relative to the size of analyzed machines. 3. It is shown that the equivalence problem for deterministic two-tape finite automata can be reduced to the same problem for prefix-free finite transducers and solved in cubic time relative to the size of the analyzed machines. 4. In the same way it is proved that the equivalence problem for deterministic finite biautomata can be solved in cubic time relative to the size of analyzed machines. 5. By means of the developed approach an efficient equivalence checking algorithm for the class of simple grammars corresponding to deterministic single-state pushdown automata is constructed.
Automatic Control and Computer Sciences – Springer Journals
Published: Dec 1, 2021
Keywords: transducer; two-tape automaton; biatomaton; simple grammar; equivalence checking; prefix-free language; language equation; decision procedure
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.