Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Electrospun Fibrous Sponges: Principle, Fabrication, and Applications

Electrospun Fibrous Sponges: Principle, Fabrication, and Applications Electrospun nanofiber materials, with the advantages of large specific surface area, small pore size, high porosity, good channel connectivity, and ease of functional modification, have been widely used in various fields including environmental governance, safety protection, and tissue engineering. With the development of functional fiber materials, the construction of three-dimensional (3D) fiber materials with stable structures has become a critical challenge to expanding application and improving the performance of electrospun fibers. In recent years, researchers have carried out a lot of studies on the 3D reconstruction of electrospun fiber membranes and direct electrospinning of fiber sponges. Specifically, a variety of 3D fibrous sponges were constructed by the 3D reconstruction of electrospun fiber membranes, including embedded hydrogels, 3D printing, gas-foaming, and freeze-drying methods. Meanwhile, the direct electrospinning methods of 3D fibrous sponges have also been successfully developed, which are mainly divided into layer-by-layer stacking, liquid-assisted collection, 3D template collection, particle leaching, and humidity field regulation. Moreover, the applications of these fibrous sponges in many fields have been explored, such as sound absorption, warmth retention, thermal insulation, air filtration, adsorption/separation, and tissue engineering. These research works provide new ideas and methods for the fabrication of 3D fiber materials. Herein, the electrospinning technology and principle were briefly introduced, the representative progress of 3D fiber sponges in recent years was summarized, and their future development prospected.Graphical Abstract[graphic not available: see fulltext] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Fiber Materials Springer Journals

Electrospun Fibrous Sponges: Principle, Fabrication, and Applications

Loading next page...
 
/lp/springer-journals/electrospun-fibrous-sponges-principle-fabrication-and-applications-ipIZ3e90TG
Publisher
Springer Journals
Copyright
Copyright © Donghua University, Shanghai, China 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
ISSN
2524-7921
eISSN
2524-793X
DOI
10.1007/s42765-022-00202-2
Publisher site
See Article on Publisher Site

Abstract

Electrospun nanofiber materials, with the advantages of large specific surface area, small pore size, high porosity, good channel connectivity, and ease of functional modification, have been widely used in various fields including environmental governance, safety protection, and tissue engineering. With the development of functional fiber materials, the construction of three-dimensional (3D) fiber materials with stable structures has become a critical challenge to expanding application and improving the performance of electrospun fibers. In recent years, researchers have carried out a lot of studies on the 3D reconstruction of electrospun fiber membranes and direct electrospinning of fiber sponges. Specifically, a variety of 3D fibrous sponges were constructed by the 3D reconstruction of electrospun fiber membranes, including embedded hydrogels, 3D printing, gas-foaming, and freeze-drying methods. Meanwhile, the direct electrospinning methods of 3D fibrous sponges have also been successfully developed, which are mainly divided into layer-by-layer stacking, liquid-assisted collection, 3D template collection, particle leaching, and humidity field regulation. Moreover, the applications of these fibrous sponges in many fields have been explored, such as sound absorption, warmth retention, thermal insulation, air filtration, adsorption/separation, and tissue engineering. These research works provide new ideas and methods for the fabrication of 3D fiber materials. Herein, the electrospinning technology and principle were briefly introduced, the representative progress of 3D fiber sponges in recent years was summarized, and their future development prospected.Graphical Abstract[graphic not available: see fulltext]

Journal

Advanced Fiber MaterialsSpringer Journals

Published: Dec 1, 2022

Keywords: Electrospun fibers; Fiber sponges; Preparation; Applications

References