Access the full text.
Sign up today, get DeepDyve free for 14 days.
In this work, shape-stabilized solid-solid phase change materials (PCMs) were fabricated by simply electrospinning polyethylene glycol (PEG) and polyvinyl alcohol (PVA). Owing to the strong hydrogen bonds and entanglement between those molecular chains of PEG and PVA, PEG was packaged by PVA. The morphological structures, thermal stability and thermal energy storage properties of those fibers were investigated. SEM results showed that those electrospun PVA/PEG composite membranes hold a three-dimensional nonwoven web structure even the content of PEG as high as 70%. The thermal energy storage ability of those composite fibers increased with the increase of the content of PEG. The heat enthalpies of PEG/PVA = 7/3 were as high as 78.806 J/g. Moreover, those composite fibers had excellent thermal stability. After 100 heating and cooling cycles, there was almost no obvious change in the melting enthalpy and crystallization enthalpy. Those fibers still maintained good thermal regulation. The simple preparation process, low cost of raw materials and excellent stability endow the PCMs great utilization potentiality in smart textile and energy storage systems.
"Advanced Fiber Materials" – Springer Journals
Published: Jun 20, 2020
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.