Access the full text.
Sign up today, get DeepDyve free for 14 days.
[For decades, humankind has enjoyed the energy efficiency benefits of scaling transistors smaller and smaller, but these benefits are waning. In a worldwide effort to continue improving computing performance, many researchers are exploring a wide range of technology alternatives, ranging from new physics (spin-, magnetic-, tunneling-, and photonic-based devices) to new nanomaterials (carbon nanotubes, two-dimensional materials, superconductors) to new devices (non-volatile embedded memories, ferroelectric-based logic and memories, q-bits) to new systems, architectures, and integration techniques (advanced die- and wafer-stacking, monolithic three-dimensional (3D) integration, on-chip photonic interconnects). However, developing new technologies from the ground up is no simple task, and requires an end-to-end approach addressing many challenges along the way. First of all, a detailed analysis of the overall potential benefits of a new technology is essential; it can take years to bring a new technology to the level of maturity required for high-volume production, and so a team of researchers must ensure upfront that they are developing the right technologies for the right applications. For example, many emerging nanotechnologies are subject to nano-scale imperfections and variations in material properties—how does one overcome these challenges at a very-large scale? Will new design techniques be required? Will circuit and system designers even use the same approaches to designing next generation systems, or would an entirely different approach offer much better results? What level of investment will be required to develop these new technologies, designs, and systems, and at the end of the day, will the outcome be worth the effort? These are just examples of the some of the major questions that are essential to consider as early as possible.]
Published: Jul 9, 2022
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.