Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Emerging Computing: From Devices to SystemsBeyond-Silicon Computing: Nano-Technologies, Nano-Design, and Nano-Systems

Emerging Computing: From Devices to Systems: Beyond-Silicon Computing: Nano-Technologies,... [For decades, humankind has enjoyed the energy efficiency benefits of scaling transistors smaller and smaller, but these benefits are waning. In a worldwide effort to continue improving computing performance, many researchers are exploring a wide range of technology alternatives, ranging from new physics (spin-, magnetic-, tunneling-, and photonic-based devices) to new nanomaterials (carbon nanotubes, two-dimensional materials, superconductors) to new devices (non-volatile embedded memories, ferroelectric-based logic and memories, q-bits) to new systems, architectures, and integration techniques (advanced die- and wafer-stacking, monolithic three-dimensional (3D) integration, on-chip photonic interconnects). However, developing new technologies from the ground up is no simple task, and requires an end-to-end approach addressing many challenges along the way. First of all, a detailed analysis of the overall potential benefits of a new technology is essential; it can take years to bring a new technology to the level of maturity required for high-volume production, and so a team of researchers must ensure upfront that they are developing the right technologies for the right applications. For example, many emerging nanotechnologies are subject to nano-scale imperfections and variations in material properties—how does one overcome these challenges at a very-large scale? Will new design techniques be required? Will circuit and system designers even use the same approaches to designing next generation systems, or would an entirely different approach offer much better results? What level of investment will be required to develop these new technologies, designs, and systems, and at the end of the day, will the outcome be worth the effort? These are just examples of the some of the major questions that are essential to consider as early as possible.] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

Emerging Computing: From Devices to SystemsBeyond-Silicon Computing: Nano-Technologies, Nano-Design, and Nano-Systems

Editors: Aly, Mohamed M. Sabry; Chattopadhyay, Anupam

Loading next page...
 
/lp/springer-journals/emerging-computing-from-devices-to-systems-beyond-silicon-computing-XvR7rIj5z0
Publisher
Springer Nature Singapore
Copyright
© Springer Nature Singapore Pte Ltd. 2023. Chapters "Innovative Memory Architectures Using Functionality Enhanced Devices" and "Intelligent Edge Biomedical Sensors in the Internet of Things (IoT) Era" are licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/). For further details see license information in the chapters.
ISBN
978-981-16-7486-0
Pages
15 –45
DOI
10.1007/978-981-16-7487-7_2
Publisher site
See Chapter on Publisher Site

Abstract

[For decades, humankind has enjoyed the energy efficiency benefits of scaling transistors smaller and smaller, but these benefits are waning. In a worldwide effort to continue improving computing performance, many researchers are exploring a wide range of technology alternatives, ranging from new physics (spin-, magnetic-, tunneling-, and photonic-based devices) to new nanomaterials (carbon nanotubes, two-dimensional materials, superconductors) to new devices (non-volatile embedded memories, ferroelectric-based logic and memories, q-bits) to new systems, architectures, and integration techniques (advanced die- and wafer-stacking, monolithic three-dimensional (3D) integration, on-chip photonic interconnects). However, developing new technologies from the ground up is no simple task, and requires an end-to-end approach addressing many challenges along the way. First of all, a detailed analysis of the overall potential benefits of a new technology is essential; it can take years to bring a new technology to the level of maturity required for high-volume production, and so a team of researchers must ensure upfront that they are developing the right technologies for the right applications. For example, many emerging nanotechnologies are subject to nano-scale imperfections and variations in material properties—how does one overcome these challenges at a very-large scale? Will new design techniques be required? Will circuit and system designers even use the same approaches to designing next generation systems, or would an entirely different approach offer much better results? What level of investment will be required to develop these new technologies, designs, and systems, and at the end of the day, will the outcome be worth the effort? These are just examples of the some of the major questions that are essential to consider as early as possible.]

Published: Jul 9, 2022

There are no references for this article.