Access the full text.
Sign up today, get DeepDyve free for 14 days.
G. Hardy, J. Littlewood (1928)
Some properties of fractional integrals. I.Mathematische Zeitschrift, 27
Yinbin Deng, Changshou Lin, Shusen Yan (2015)
On the prescribed scalar curvature problem in RN, local uniqueness and periodicityJournal de Mathématiques Pures et Appliquées, 104
D. Cao, Shuanglong Li, Peng Luo (2015)
Uniqueness of positive bound states with multi-bump for nonlinear Schrödinger equationsCalculus of Variations and Partial Differential Equations, 54
D. Ruiz, Giusi Vaira (2009)
Cluster solutions for the Schrödinger-Poisson-Slater problem around a local minimum of the potentialRevista Matematica Iberoamericana, 27
T. D’Aprile (2007)
Semiclassical states for the nonlinear Schrödinger equation with the electromagnetic fieldNonlinear Differential Equations and Applications NoDEA, 13
W. Long, Zhiwei Xiong (2017)
Non-radial multipeak positive solutions for the Schrödinger–Poisson problemJournal of Mathematical Analysis and Applications, 455
A. Floer, A. Weinstein (1986)
Nonspreading wave packets for the cubic Schrödinger equation with a bounded potentialJournal of Functional Analysis, 69
I. Catto, P. Lions (1993)
Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories. Part 2 : Stability is equivalent to the binding of neutral subsystemsCommunications in Partial Differential Equations, 18
E. Lieb, B. Simon (1977)
The Thomas-Fermi theory of atoms, molecules and solidsAdvances in Mathematics, 23
V. Benci, D. Fortunato (2002)
SOLITARY WAVES OF THE NONLINEAR KLEIN-GORDON EQUATION COUPLED WITH THE MAXWELL EQUATIONSReviews in Mathematical Physics, 14
D. Ruiz (2006)
The Schrödinger–Poisson equation under the effect of a nonlinear local termJournal of Functional Analysis, 237
R. Benguria (1981)
167Commun. Math. Phys., 79
Benniao Li, W. Long, Z. Tang, Jinge Yang (2021)
Uniqueness of positive bound states with multiple bumps for Schrödinger–Poisson systemCalculus of Variations and Partial Differential Equations, 60
A. Azzollini, A. Pomponio (2007)
A Note on the Ground State Solutions for the Nonlinear Schrödinger-Maxwell EquationsBollettino Della Unione Matematica Italiana, 2
Yuxia Guo, Benniao Li, Shusen Yan (2020)
Exact number of single bubbling solutions for elliptic problems of Ambrosetti–Prodi typeCalculus of Variations and Partial Differential Equations, 59
Juntao Sun, Tsung‐fang Wu, Zhaosheng Feng (2016)
Multiplicity of positive solutions for a nonlinear Schrödinger–Poisson systemJournal of Differential Equations, 260
Xiaoming He, W. Zou (2012)
Existence and concentration of ground states for Schrödinger-Poisson equations with critical growthJournal of Mathematical Physics, 53
D. Cao, Shuangjie Peng, Shusen Yan (2021)
Singularly Perturbed Methods for Nonlinear Elliptic Problems
T. D’Aprile, Juncheng Wei (2005)
Standing waves in the Maxwell-Schrödinger equation and an optimal configuration problemCalculus of Variations and Partial Differential Equations, 25
T. D’Aprile, Dimitri Mugnai (2004)
Solitary waves for nonlinear Klein–Gordon–Maxwell and Schrödinger–Maxwell equationsProceedings of the Royal Society of Edinburgh: Section A Mathematics, 134
M. Colin, Tatsuya Watanabe (2019)
A refined stability result for standing waves of the Schrödinger–Maxwell systemNonlinearity, 32
L. Glangetas (1993)
Uniqueness of positive solutions of a nonlinear elliptic equation involving the critical exponentNonlinear Analysis-theory Methods & Applications, 20
R. Benguria, H. Brezis, E. Lieb (1981)
The Thomas—Fermi—von Weizsäcker Theory of Atoms and MoleculesCommunications in Mathematical Physics, 79
I. Catto, P. Lions (1992)
A ecessary and Sufficient Condition for The Stability of General molecular SystemsCommunications in Partial Differential Equations, 17
(1989)
Uniqueness of positive solutions of − u − u + up = 0
T. D’Aprile, Juncheng Wei (2006)
Boundary Concentration in Radial Solutions to a System of Semilinear Elliptic EquationsJournal of the London Mathematical Society, 74
M.K. Kwong (1989)
Uniqueness of positive solutions of −Δu−u+up=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$-\Delta u - u + u^{p} = 0$\end{document}Arch. Ration. Mech. Anal., 105
M. Grossi (2002)
On the number of single-peak solutions of the nonlinear Schrödinger equationAnnales De L Institut Henri Poincare-analyse Non Lineaire, 19
M. Marin, Andreas Öchsner (2018)
Elliptic Partial Differential EquationsNumerical Methods for Engineers and Scientists
A. Ambrosetti (2008)
On Schrödinger-Poisson SystemsMilan Journal of Mathematics, 76
D. Cao, E. Noussair, Shusen Yan (1999)
Solutions with multiple peaks for nonlinear elliptic equationsProceedings of the Royal Society of Edinburgh: Section A Mathematics, 129
G. Cerami, Giusi Vaira (2010)
Positive solutions for some non-autonomous Schrödinger–Poisson systemsJournal of Differential Equations, 248
D. Ruiz (2005)
SEMICLASSICAL STATES FOR COUPLED SCHRÖDINGER–MAXWELL EQUATIONS: CONCENTRATION AROUND A SPHEREMathematical Models and Methods in Applied Sciences, 15
T. D’Aprile, Dimitri Mugnai (2004)
Non-Existence Results for the Coupled Klein-Gordon-Maxwell EquationsAdvanced Nonlinear Studies, 4
V. Benci, D. Fortunato (1998)
An eigenvalue problem for the Schrödinger-Maxwell equationsTopological Methods in Nonlinear Analysis, 11
Y. Oh (1990)
On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potentialCommunications in Mathematical Physics, 131
J. Bellazzini, L. Jeanjean, Tingjian Luo (2011)
Existence and instability of standing waves with prescribed norm for a class of Schrödinger–Poisson equationsProceedings of the London Mathematical Society, 107
D. Cao, H. Heinz (2003)
Uniqueness of positive multi-lump bound states of nonlinear Schrödinger equationsMathematische Zeitschrift, 243
P. Lions (1987)
Solutions of Hartree-Fock equations for Coulomb systemsCommunications in Mathematical Physics, 109
Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations
This paper is concerned with the number of multi-peak solutions for the Schrödinger-Poisson system {−ε2Δu+V(x)u+Φ(x)u=|u|p−1u, in R3,−ΔΦ=u2, in R3,\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ \left \{ \textstyle\begin{array}{lll} -\varepsilon ^{2} \Delta u + V(x) u + \Phi (x) u = |u|^{p-1} u, && \text{ in } \mathbb{R}^{3}, \\ - \Delta \Phi = u^{2}, && \text{ in } \mathbb{R}^{3}, \end{array}\displaystyle \right . $$\end{document} where ε\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$\varepsilon $\end{document} is a parameter, p∈(1,5)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$p \in (1, 5)$\end{document} and V(x)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$V (x)$\end{document} is the potential function. We obtain the number of peak solutions for the system when the solutions concentrate at the critical points of V(x)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$V(x)$\end{document} through Pohozaev identities and the blow-up analysis.
Acta Applicandae Mathematicae – Springer Journals
Published: Jun 1, 2023
Keywords: Schrödinger-Poisson systems; Peak solutions; Local uniqueness; 35J20; 35J60
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.