Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Exact Number of Peak Solutions for Nonlinear Schrödinger-Poisson Systems

Exact Number of Peak Solutions for Nonlinear Schrödinger-Poisson Systems This paper is concerned with the number of multi-peak solutions for the Schrödinger-Poisson system {−ε2Δu+V(x)u+Φ(x)u=|u|p−1u, in R3,−ΔΦ=u2, in R3,\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ \left \{ \textstyle\begin{array}{lll} -\varepsilon ^{2} \Delta u + V(x) u + \Phi (x) u = |u|^{p-1} u, && \text{ in } \mathbb{R}^{3}, \\ - \Delta \Phi = u^{2}, && \text{ in } \mathbb{R}^{3}, \end{array}\displaystyle \right . $$\end{document} where ε\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$\varepsilon $\end{document} is a parameter, p∈(1,5)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$p \in (1, 5)$\end{document} and V(x)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$V (x)$\end{document} is the potential function. We obtain the number of peak solutions for the system when the solutions concentrate at the critical points of V(x)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$V(x)$\end{document} through Pohozaev identities and the blow-up analysis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Acta Applicandae Mathematicae Springer Journals

Exact Number of Peak Solutions for Nonlinear Schrödinger-Poisson Systems

Loading next page...
 
/lp/springer-journals/exact-number-of-peak-solutions-for-nonlinear-schr-dinger-poisson-fIbiKLk8MQ

References (40)

Publisher
Springer Journals
Copyright
Copyright © The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
ISSN
0167-8019
eISSN
1572-9036
DOI
10.1007/s10440-023-00579-1
Publisher site
See Article on Publisher Site

Abstract

This paper is concerned with the number of multi-peak solutions for the Schrödinger-Poisson system {−ε2Δu+V(x)u+Φ(x)u=|u|p−1u, in R3,−ΔΦ=u2, in R3,\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ \left \{ \textstyle\begin{array}{lll} -\varepsilon ^{2} \Delta u + V(x) u + \Phi (x) u = |u|^{p-1} u, && \text{ in } \mathbb{R}^{3}, \\ - \Delta \Phi = u^{2}, && \text{ in } \mathbb{R}^{3}, \end{array}\displaystyle \right . $$\end{document} where ε\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$\varepsilon $\end{document} is a parameter, p∈(1,5)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$p \in (1, 5)$\end{document} and V(x)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$V (x)$\end{document} is the potential function. We obtain the number of peak solutions for the system when the solutions concentrate at the critical points of V(x)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$V(x)$\end{document} through Pohozaev identities and the blow-up analysis.

Journal

Acta Applicandae MathematicaeSpringer Journals

Published: Jun 1, 2023

Keywords: Schrödinger-Poisson systems; Peak solutions; Local uniqueness; 35J20; 35J60

There are no references for this article.