Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Existence of positive solutions for fractional differential systems with multi point boundary conditions

Existence of positive solutions for fractional differential systems with multi point boundary... In this paper, we study the existence of positive solutions to the boundary value problem for the fractional differential system $$\left\{\begin{array}{lll} D_{0^+}^\beta \phi_p(D_{0^+}^\alpha u) (t) = f_1 (t, u (t), v (t)),\quad t \in (0, 1),\\ D_{0^+}^\beta \phi_p(D_{0^+}^\alpha v) (t) = f_2 (t, u (t), v(t)), \quad t \in (0, 1),\\ D_{0^+}^\alpha u(0)= D_{0^+}^\alpha u(1)=0,\; u (0) = 0, \quad u (1)-\Sigma_{i=1}^{m-2} a_{1i}\;u(\xi_{1i})=\lambda_1,\\ D_{0^+}^\alpha v(0)= D_{0^+}^\alpha v(1)=0,\; v (0) = 0, \quad v (1)-\Sigma_{i=1}^{m-2} a_{2i}\; v(\xi_{2i})=\lambda_2, \end{array}\right. $$ where $${1<\alpha,\beta\leq 2, 2 <\alpha + \beta\leq 4, D_{0^+}^\alpha}$$ is the Riemann–Liouville fractional derivative of order α. By using the Leggett–Williams fixed point theorem in a cone, the existence of three positive solutions for nonlinear singular boundary value problems is obtained. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png ANNALI DELL'UNIVERSITA' DI FERRARA Springer Journals

Existence of positive solutions for fractional differential systems with multi point boundary conditions

Loading next page...
 
/lp/springer-journals/existence-of-positive-solutions-for-fractional-differential-systems-LhiThXNF1e
Publisher
Springer Journals
Copyright
Copyright © 2012 by Università degli Studi di Ferrara
Subject
Mathematics; Mathematics, general; Analysis; Geometry; History of Mathematical Sciences; Numerical Analysis; Algebraic Geometry
ISSN
0430-3202
eISSN
1827-1510
DOI
10.1007/s11565-012-0160-x
Publisher site
See Article on Publisher Site

Abstract

In this paper, we study the existence of positive solutions to the boundary value problem for the fractional differential system $$\left\{\begin{array}{lll} D_{0^+}^\beta \phi_p(D_{0^+}^\alpha u) (t) = f_1 (t, u (t), v (t)),\quad t \in (0, 1),\\ D_{0^+}^\beta \phi_p(D_{0^+}^\alpha v) (t) = f_2 (t, u (t), v(t)), \quad t \in (0, 1),\\ D_{0^+}^\alpha u(0)= D_{0^+}^\alpha u(1)=0,\; u (0) = 0, \quad u (1)-\Sigma_{i=1}^{m-2} a_{1i}\;u(\xi_{1i})=\lambda_1,\\ D_{0^+}^\alpha v(0)= D_{0^+}^\alpha v(1)=0,\; v (0) = 0, \quad v (1)-\Sigma_{i=1}^{m-2} a_{2i}\; v(\xi_{2i})=\lambda_2, \end{array}\right. $$ where $${1<\alpha,\beta\leq 2, 2 <\alpha + \beta\leq 4, D_{0^+}^\alpha}$$ is the Riemann–Liouville fractional derivative of order α. By using the Leggett–Williams fixed point theorem in a cone, the existence of three positive solutions for nonlinear singular boundary value problems is obtained.

Journal

ANNALI DELL'UNIVERSITA' DI FERRARASpringer Journals

Published: Jun 26, 2012

References