Access the full text.
Sign up today, get DeepDyve free for 14 days.
[The coefficient matrix A (1.9) in the normal equations (1.7) will be ill-conditioned for small λ, causing the number of correct digits in the computed spline to be small. To try to compensate for this problem, one can reformulate spline smoothing as a basic least-squares problem and solve it using a QR factorization. De Hoog and Hutchinson [1], building on earlier work [2, 3, 4] on general banded least-squares problems, presented a QR algorithm for spline smoothing. In this chapter we will evaluate the condition number of the coefficient matrix, present a faster and more compact QR algorithm, and determine whether this alternative is preferable to solving the normal equations.]
Published: Sep 18, 2012
Keywords: Condition Number; Coefficient Matrix; Normal Equation; Cholesky Factor; Spline Smoothing
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.