Access the full text.
Sign up today, get DeepDyve free for 14 days.
S. Shukla, R. Karri, S. Goldstein, F. Brewer, K. Banerjee, S. Basu (2003)
Nano, quantum, and molecular computing: are we ready for the validation and test challenges?Eighth IEEE International High-Level Design Validation and Test Workshop
Soonchil Lee, S. Lee, Taegon Kim, Jae-Seung Lee, J. Biamonte, M. Perkowski (2006)
The Cost of Quantum Gate PrimitivesJ. Multiple Valued Log. Soft Comput., 12
Andrew Childs, I. Chuang, D. Leung (2000)
Realization of quantum process tomography in NMRPhysical Review A, 64
Tristan Hubsch (1998)
QUANTUM MECHANICS IS EITHER NONLINEAR OR NON-INTROSPECTIVEModern Physics Letters A, 13
A. Barenco, T. Brun, R. Schack, T. Spiller (1996)
Effects of noise on quantum error correction algorithmsPhysical Review A, 56
H. Cummins, J. Jones (1999)
Use of composite rotations to correct systematic errors in NMR quantum computationNew Journal of Physics, 2
J. Racusin, S. Karpov, M. Sokolowski, J. Granot, X. Wu, V. Pal'shin, S. Covino, A. Horst, S. Oates, P. Schady, R. Smith, J. Cummings, R. Starling, L. Piotrowski, B. Zhang, P. Evans, S. Holland, K. Małek, M. Page, L. Vetere, R. Margutti, C. Guidorzi, A. Kamble, P. Curran, A. Beardmore, C. Kouveliotou, L. Mankiewicz, A. Melandri, P. O'Brien, K. Page, T. Piran, N. Tanvir, G. Wrochna, R. Aptekar', C. Bartolini, S. Barthelmy, G. Beskin, S. Bondar, S. Campana, A. Cucchiara, M. Ćwiok, P. D’Avanzo, V. D’Elia, M. Valle, W. Dominik, A. Falcone, F. Fiore, D. Fox, D. Frederiks, A. Fruchter, D. Fugazza, M. Garrett, N. Gehrels, S. Golenetskii, A. Gomboc, G. Greco, A. Guarnieri, S. Immler, G. Kasprowicz, A. Levan, E. Mazets, E. Molinari, A. Moretti, K. Nawrocki, P. Oleynik, J. Osborne, C. Pagani, Z. Paragi, M. Perri, A. Piccioni, E. Ramirez-Ruiz, P. Roming, I. Steele, R. Strom, V. Testa, G. Tosti, M. Ulanov, K. Wiersema, R. Wijers, A. Żarnecki, F. Zerbi, P. Mészáros, G. Chincarini, D. Burrows (2003)
Demonstration of an all-optical quantum controlled-NOT gateNature, 426
M. Nielsen (2002)
A simple formula for the average gate fidelity of a quantum dynamical operation [rapid communication]Physics Letters A
(2003)
Impact of Errors on a Quantum Computer Architecture
JA Jones, M Mosca (1998)
Implementation of a quantum algorithm to solve Deutsch’s problem on a nuclear magnetic resonance quantum computerJ Chem Phys, 109
Jack Jones, Richard Hansen, Michele Mosca (1998)
Quantum logic gates and nuclear magnetic resonance pulse sequences.Journal of magnetic resonance, 135 2
Jonathan Jones (2004)
Nuclear Magnetic Resonance Quantum Computation, 79
R. Schumann (2000)
Quantum Information TheoryarXiv: Quantum Physics
P. Rohde, G. Pryde, J. O'Brien, T. Ralph (2004)
Quantum gate characterization in an extended Hilbert space2005 Quantum Electronics and Laser Science Conference, 1
B. Reichardt, Lov Grover (2005)
Quantum error correction of systematic errors using a quantum search frameworkPhysical Review A, 72
P. Love, B. Boghosian (2005)
From Dirac to Diffusion: Decoherence in Quantum Lattice GasesQuantum Information Processing, 4
S. Bettelli (2003)
Quantitative model for the effective decoherence of a quantum computer with imperfect unitary operationsPhysical Review A, 69
I. Chuang, M. Nielsen (1996)
Prescription for experimental determination of the dynamics of a quantum black boxJournal of Modern Optics, 44
P. Shor (1995)
Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum ComputerSIAM Rev., 41
W. Kautz (1967)
Testing for Faults in Combinational Cellular Logic Arrays
N. Shenvi, K. Brown, K. Whaley (2003)
Effects of a random noisy oracle on search algorithm complexityPhysical Review A, 68
A. Harrow, M. Nielsen (2003)
Robustness of quantum gates in the presence of noisePhysical Review A, 68
(1971)
Testing faults in combinational cellular logic arrays. In: Proceedings of 8th annu symp switching and automata theory, pp
D. Aharonov, M. Ben-Or (1996)
Fault-Tolerant Quantum Computation with Constant Error RateSIAM J. Comput., 38
M. Bowdrey, D. Oi, A. Short, K. Banaszek, Jonathan Jones (2001)
Fidelity of single qubit mapsPhysics Letters A, 294
J. Hayes, I. Polian, B. Becker (2004)
Testing for missing-gate faults in reversible circuits13th Asian Test Symposium
M. Bowdrey, J. Jones (2001)
A Simple and Convenient Measure of NMR Rotor FidelityarXiv: Quantum Physics
M. Perkowski, J. Biamonte, M. Lukac (2005)
Test generation and fault localization for quantum circuits35th International Symposium on Multiple-Valued Logic (ISMVL'05)
Lov Grover (2005)
Fixed-point quantum search.Physical review letters, 95 15
Andrew Childs, J. Preskill, J. Renes (1999)
Quantum information and precision measurementJournal of Modern Optics, 47
M. Anwar, D. Blazina, H. Carteret, H. Carteret, S. Duckett, T. Halstead, Jonathan Jones, Christopher Kozak, R. Taylor (2003)
Preparing high purity initial states for nuclear magnetic resonance quantum computing.Physical review letters, 93 4
Charles Bennett, D. DiVincenzo, J. Smolin, W. Wootters (1996)
Mixed-state entanglement and quantum error correction.Physical review. A, Atomic, molecular, and optical physics, 54 5
Lov Grover (1997)
Quantum Mechanics Helps in Searching for a Needle in a HaystackPhysical Review Letters, 79
J. O'Brien, G. Pryde, A. Gilchrist, D. James, N. Langford, T. Ralph, A. White (2004)
Quantum process tomography of a controlled-NOT gate.Physical review letters, 93 8
A. Steane, D. Lucas (2000)
Quantum computing with trapped ions, atoms and light, 551
Jonathan Jones, M. Mosca (1998)
Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computerJournal of Chemical Physics, 109
Jonathan Jones, M. Mosca, R. Hansen (1998)
Implementation of a Quantum Search Algorithm on a Nuclear Magnetic Resonance Quantum Computer
J. Altepeter, D. Branning, E. Jeffrey, T. Wei, P. Kwiat, R. Thew, J. O'Brien, M. Nielsen, A. White (2003)
Ancilla-assisted quantum process tomography.Physical review letters, 90 19
Kyungtaec Kim, Myeonghun Song, Soonchil Lee, Jae-Seung Lee (2005)
Quantum process tomography with an arbitrary number of ancillary qubits in nuclear magnetic resonanceJournal of the Korean Physical Society, 47
M. Steffen, L. Vandersypen, I. Chuang (2001)
Toward Quantum Computation: A Five-Qubit Quantum ProcessorIEEE Micro, 21
Daniel Gottesman (2000)
An Introduction to Quantum Error CorrectionarXiv: Quantum Physics
Lov Grover (2005)
A different kind of quantum search
(2001)
http://nmr.physics.ox.ac.uk; 40
A. Gilchrist, N. Langford, M. Nielsen (2004)
Distance measures to compare real and ideal quantum processes (14 pages)Physical Review A, 71
S. Kak (1998)
The Initialization Problem in Quantum ComputingFoundations of Physics, 29
A. Barenco, C. Bennett, R. Cleve, D. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin, H. Weinfurter (1995)
Elementary gates for quantum computation.Physical review. A, Atomic, molecular, and optical physics, 52 5
W. Kautz (1961)
Automatic fault detection in combinational switching networks
(2004)
Video Lectures on Quantum Computation,”, 2004, free online, www.quiprocone.org
Jennifer Dodd, M. Nielsen (2001)
Simple operational interpretation of the fidelity of mixed statesPhysical Review A, 66
C. Khetrapal, K. Ramanathan (1995)
Advances in NMRChemInform, 26
D. Deutsch (1989)
Quantum computational networksProceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 425
Jonathan Jones, M. Mosca, R. Hansen (1998)
Implementation of a quantum search algorithm on a quantum computerNature, 393
D. Jolly (2008)
Advanced Quantum Mechanics
Bryan Eastin, S. Flammia (2004)
Q-circuit TutorialarXiv: Quantum Physics
D. DiVincenzo (2001)
Book review on quantum computation and quantum informationQuantum Inf. Comput., 1
L. Vandersypen, C. Yannoni, Isaac Chuang (2001)
Liquid State NMR Quantum ComputingChemInform, 32
E. McCluskey, Chao-Wen Tseng (2000)
Stuck-fault tests vs. actual defectsProceedings International Test Conference 2000 (IEEE Cat. No.00CH37159)
M. Amin, M. Grajcar, E. Ll'ichev, A. Izmalkov, A.M. Brink, G. Rose, A. Smirnov, A. Zagoskin (2004)
Superconducting quantum storage and processing2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519)
J. Biamonte, M. Perkowski (2004)
Testing a Quantum ComputerarXiv: Quantum Physics
D. Maslov, Christina Young, D. Miller, G. Dueck (2005)
Quantum circuit simplification using templatesDesign, Automation and Test in Europe
D. James, P. Kwiat, W. Munro, A. White (2001)
On the measurement of qubits
A. White, A. Gilchrist, G. Pryde, J. O'Brien, M. Bremner, N. Langford (2007)
Measuring two-qubit gatesJournal of The Optical Society of America B-optical Physics, 24
J. Jones, M. Mosca (1998)
APPROXIMATE QUANTUM COUNTING ON AN NMR ENSEMBLE QUANTUM COMPUTERPhysical Review Letters, 83
G. D’Ariano, P. Presti (2001)
Quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation.Physical review letters, 86 19
E. Knill, R. Laflamme, W. Zurek (1997)
Resilient quantum computation: error models and thresholdsProceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454
KN Patel, JP Hayes, IL Markov (2004)
Fault testing for reversible circuitsIEEE Trans CAD, 23
Jeff Allen, J. Biamonte, M. Perkowski (2005)
ATPG for reversible circuits using technology−related fault models
Colin Williams, S. Clearwater (1997)
Explorations in quantum computing
L. Vandersypen, M. Steffen, G. Breyta, C. Yannoni, M. Sherwood, I. Chuang (2001)
Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonanceNature, 414
Jonathan Jones (2004)
Quantum Computation with NMR
Jonathan Jones, E. Knill (1999)
Efficient refocusing of one-spin and two-spin interactions for NMR quantum computation.Journal of magnetic resonance, 141 2
A Gilchrist, NK Langford, MA Nielsen (2005)
Distance measures to compare real and ideal quantum processesPhys Rev A, 71
S. Glaser (2001)
NMR Quantum Computing.Angewandte Chemie, 40 1
George Viamontes, I. Markov, J. Hayes (2004)
Graph-based simulation of quantum computation in the density matrix representation, 5436
H. Cummins, G. Llewellyn, Jonathan Jones (2002)
Tackling systematic errors in quantum logic gates with composite rotationsPhysical Review A, 67
M. Mosca (2003)
Quantum Computer Algorithms
D. Leung (2000)
Towards Robust Quantum ComputationArXiv, cs.CC/0012017
W. Zurek (1984)
Reversibility and stability of information processing systemsPhysical Review Letters, 53
MA Nielsen (2002)
A simple formula for the average gate fidelity of a quantum dynamical operationPhys Lett A, 303
C. Dickinson (2007)
Liquid‐State NMR
U. Kalay, D. Hall, M. Perkowski (2000)
A Minimal Universal Test Set for Self-Test of EXOR-Sum-of-Products CircuitsIEEE Trans. Computers, 49
(1961)
Automatic fault detection in combinatoinal switching networks. In: Proc AIEE 2nd switching circuit theory and logical design symp
A simple operational interpretation of the ﬁdelity
(2004)
Quantum computing lecture notes. Class notes, University of Washington
(2004)
Flammia, ”Q-circuit Tutorial,” free online, 2004, 7 pages, quant-ph/0406003
D. Aharonov, M. Ben-Or (1996)
Fault-tolerant quantum computation with constant error
Li Xiao, Jonathan Jones (2005)
Error tolerance in an NMR implementation of Grover’s fixed-point quantum search algorithmPhysical Review A, 72
Yazhen Wang (2012)
Quantum Computation and Quantum InformationStatistical Science, 27
A. White, A. Gilchrist, G. Pryde, J. O'Brien, M. Bremner, N. Langford (2003)
Measuring Controlled-NOT and two-qubit gate operation
A Barenco, TA Brun, R Schack, TP Spiller (1998)
Effects of noise on quantum error correction algorithmsMod Phys Lett A, 13
K. Patel, J. Hayes, I. Markov (2003)
Fault testing for reversible circuitsIEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 23
Conversation at Clarendon Laboratory
In classical test and verification one develops a test set separating a correct circuit from a circuit containing any considered fault. Classical faults are modelled at the logical level by fault models that act on classical states. The stuck fault model, thought of as a lead connected to a power rail or to a ground, is most typically considered. A classical test set complete for the stuck fault model propagates both binary basis states, 0 and 1, through all nodes in a network and is known to detect many physical faults. A classical test set complete for the stuck fault model allows all circuit nodes to be completely tested and verifies the function of many gates. It is natural to ask if one may adapt any of the known classical methods to test quantum circuits. Of course, classical fault models do not capture all the logical failures found in quantum circuits. The first obstacle faced when using methods from classical test is developing a set of realistic quantum-logical fault models (a question which we address, but will likely remain largely open until the advent of the first quantum computer). Developing fault models to abstract the test problem away from the device level motivated our study. Several results are established. First, we describe typical modes of failure present in the physical design of quantum circuits. From this we develop fault models for quantum binary quantum circuits that enable testing at the logical level. The application of these fault models is shown by adapting the classical test set generation technique known as constructing a fault table to generate quantum test sets. A test set developed using this method will detect each of the considered faults.
Journal of Electronic Testing – Springer Journals
Published: Nov 16, 2010
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.