Access the full text.
Sign up today, get DeepDyve free for 14 days.
Much of the mathematics with which Felix Klein and Sophus Lie are now associated (Klein’s Erlangen Program and Lie’s theory of transformation groups) is rooted in ideas they developed in their early work: the consideration of geometric objects or properties preserved by systems of transformations. As early as 1870, Lie studied particular examples of what he later called contact transformations, which preserve tangency and which came to play a crucial role in his systematic study of transformation groups and differential equations. This note examines Klein’s efforts in the 1870s to interpret contact transformations in terms of connexes and traces that interpretation (which included a false assumption) over the decades that follow. The analysis passes from Klein’s letters to Lie through Lindemann’s edition of Clebsch’s lectures on geometry in 1876, Lie’s criticism of it in his treatise on transformation groups in 1893, and the careful development of that interpretation by Dohmen, a student of Engel, in his 1905 dissertation. The now-obscure notion of connexes and its relation to Lie’s line elements and surface elements are discussed here in some detail.
Archive for History of Exact Sciences – Springer Journals
Published: Mar 9, 2023
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.