Access the full text.
Sign up today, get DeepDyve free for 14 days.
M. Rafiee, Jie Yang, S. Kitipornchai (2013)
Large amplitude vibration of carbon nanotube reinforced functionally graded composite beams with piezoelectric layersComposite Structures, 96
RJ Young (2012)
1459Compos Sci Technol, 72
M Rafiee (2013)
716Compos Struct, 96
X Du (2008)
491Nat Nanotechnol, 3
LW Zhang (2014)
472Compos Struct, 108
F Gauvin (2015)
359Polym Degrad Stab, 121
A Montazeri (2011)
4034Phys Lett A, 375
J. Reddy (1984)
A Simple Higher-Order Theory for Laminated Composite PlatesJournal of Applied Mechanics, 51
K. Spanos, S. Georgantzinos, N. Anifantis (2015)
Mechanical properties of graphene nanocomposites: A multiscale finite element predictionComposite Structures, 132
H Wu (2015)
1540011Int J Struct Stab Dyn, 15
M Song (2017)
579Compos Struct, 159
MA Rafiee (2010)
179Small, 6
A. Montazeri, H. Rafii-Tabar (2011)
Multiscale modeling of graphene- and nanotube-based reinforced polymer nanocompositesPhysics Letters A, 375
Helong Wu, Jie Yang, S. Kitipornchai (2016)
Nonlinear vibration of functionally graded carbon nanotube-reinforced composite beams with geometric imperfectionsComposites Part B-engineering, 90
Changgu Lee, Xiaoding Wei, J. Kysar, J. Hone (2008)
Measurement of the Elastic Properties and Intrinsic Strength of Monolayer GrapheneScience, 321
H Adam (1997)
349Mater Des, 18
X Zhao (2009)
161Compos Struct, 90
L. Ke, Junliang Yang, S. Kitipornchai (2013)
Dynamic Stability of Functionally Graded Carbon Nanotube-Reinforced Composite BeamsMechanics of Advanced Materials and Structures, 20
LL Ke (2010)
676Compos Struct, 92
JA King (2013)
4217J Appl Polym Sci, 128
Mitao Song, S. Kitipornchai, Jie Yang (2017)
Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplateletsComposite Structures, 159
C Lee (2008)
385Science, 321
S. Bellucci, C. Balasubramanian, F. Micciulla, G. Rinaldi (2006)
CNT composites for aerospace applicationsJournal of Experimental Nanoscience, 2
Yi Wang, Jinhong Yu, W. Dai, Yingze Song, D. Wang, L. Zeng, N. Jiang (2015)
Enhanced thermal and electrical properties of epoxy composites reinforced with graphene nanoplateletsPolymer Composites, 36
J Liu (2013)
6215Ceram Int, 39
B. Mortazavi, O. Benzerara, H. Meyer, J. Bardon, S. Ahzi (2013)
Combined molecular dynamics-finite element multiscale modeling of thermal conduction in graphene epoxy nanocompositesCarbon, 60
Y Chandra (2012)
303Mater Sci Eng B, 177
Y. Chandra, R. Chowdhury, F. Scarpa, S. Adhikari, J. Sienz, Cris Arnold, T. Murmu, D. Bould (2012)
Vibration frequency of graphene based composites: A multiscale approachMaterials Science and Engineering B-advanced Functional Solid-state Materials, 177
JN Reddy (1984)
745J Appl Mech, 51
Xu Du, I. Skachko, A. Barker, E. Andrei (2008)
Approaching ballistic transport in suspended graphene.Nature nanotechnology, 3 8
Y Wang (2015)
556Polym Compos, 36
Jeffrey Potts, Daniel Dreyer, C. Bielawski, R. Ruoff (2011)
Graphene-based polymer nanocompositesPolymer, 52
Xiao Huang, X. Qi, F. Boey, Hua Zhang (2012)
Graphene-based composites.Chemical Society reviews, 41 2
H. Adam (1997)
Carbon fibre in automotive applicationsMaterials & Design, 18
KN Spanos (2015)
536Compos Struct, 132
MA Rafiee (2009)
3884ACS Nano, 3
HL Wu (2016)
86Compos B Eng, 90
M Mohammadimehr (2016)
361Compos Struct, 138
M Rafiee (2013)
1147Comput Math Appl, 66
B Mortazavi (2013)
356Carbon, 60
X. Ji, Yanping Cao, Xi-Qiao Feng (2010)
Micromechanics prediction of the effective elastic moduli of graphene sheet-reinforced polymer nanocompositesModelling and Simulation in Materials Science and Engineering, 18
M. Mohammadimehr, M. Salemi, B. Navi (2016)
Bending, buckling, and free vibration analysis of MSGT microcomposite Reddy plate reinforced by FG-SWCNTs with temperature-dependent material properties under hydro-thermo-mechanical loadings using DQMComposite Structures, 138
Lu-Wen Zhang, P. Zhu, K. Liew (2014)
Thermal buckling of functionally graded plates using a local Kriging meshless methodComposite Structures, 108
Hyun-Woo Kim, Ahmed Abdala, C. Macosko (2010)
Graphene/Polymer NanocompositesMacromolecules, 43
M. Rafiee, J. Rafiee, Zhongzhen Yu, N. Koratkar (2009)
Buckling resistant graphene nanocompositesApplied Physics Letters, 95
S Bellucci (2007)
193J Exp Nanosci, 2
S Baradaran (2014)
32Carbon, 69
M. Rafiee, J. Rafiee, I. Srivastava, Zhou Wang, Huaihe Song, Zhongzhen Yu, N. Koratkar (2010)
Fracture and fatigue in graphene nanocomposites.Small, 6 2
JA King, DR Klimek, I Miskioglu, GM Odegard (2013)
Mechanical properties of graphene nanoplatelet/epoxy compositesJ Appl Polym Sci, 128
H-S Shen (2009)
9Compos Struct, 91
S. Baradaran, E. Moghaddam, W. Basirun, M. Mehrali, M. Sookhakian, M. Hamdi, M. Moghaddam, Y. Alias (2014)
Mechanical properties and biomedical applications of a nanotube hydroxyapatite-reduced graphene oxide compositeCarbon, 69
MA Rafiee (2009)
3884.26ACS Nano, 3
R Ansari (2014)
316Compos Struct, 113
Helong Wu, S. Kitipornchai, Jie Yang (2015)
Free vibration and buckling analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheetsInternational Journal of Structural Stability and Dynamics, 15
M. Rafiee, J. Rafiee, Zhou Wang, Huaihe Song, Zhongzhen Yu, N. Koratkar (2009)
Enhanced mechanical properties of nanocomposites at low graphene content.ACS nano, 3 12
X Huang (2012)
666Chem Soc Rev, 41
H Kim (2010)
6515Macromolecules, 43
X-Y Ji (2010)
045005Model Simul Mater Sci, 18
H Wu (2017)
430Mater Des, 132
M Rafiee, J Yang, S Kitipornchai (2013)
Large amplitude vibrations of carbon nanotube reinforced composite beams with piezoelectric layersCompos Struct, 96
Helong Wu, S. Kitipornchai, Jie Yang (2017)
Thermal buckling and postbuckling of functionally graded graphene nanocomposite platesMaterials & Design, 132
Hui‐Shen Shen (2009)
Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environmentsComposite Structures, 91
R. Young, I. Kinloch, L. Gong, K. Novoselov (2012)
The mechanics of graphene nanocomposites: A reviewComposites Science and Technology, 72
MA Rafiee (2009)
223103Appl Phys Lett, 95
X. Zhao, Yiu-yin Lee, K. Liew (2009)
Mechanical and thermal buckling analysis of functionally graded platesComposite Structures, 90
M. Rafiee, Jie Yang, S. Kitipornchai (2013)
Thermal bifurcation buckling of piezoelectric carbon nanotube reinforced composite beamsComput. Math. Appl., 66
AA Balandin (2008)
902Nano Lett, 8
J. King, Danielle Klimek, I. Miskioglu, G. Odegard (2013)
Mechanical properties of graphene nanoplatelet/epoxy compositesJournal of Composite Materials, 49
Jian Liu, H. Yan, K. Jiang (2013)
Mechanical properties of graphene platelet-reinforced alumina ceramic compositesCeramics International, 39
L. Ke, Junliang Yang, S. Kitipornchai (2010)
Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beamsComposite Structures, 92
A. Balandin, Suchismita Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. Lau (2008)
Superior thermal conductivity of single-layer graphene.Nano letters, 8 3
R. Ansari, M. Shojaei, V. Mohammadi, R. Gholami, F. Sadeghi (2014)
Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite Timoshenko beamsComposite Structures, 113
F. Gauvin, M. Robert (2015)
Durability study of vinylester/silicate nanocomposites for civil engineering applicationsPolymer Degradation and Stability, 121
JR Potts (2011)
5Polymer, 52
LL Ke (2013)
28Mech Adv Mater Struct, 20
As a first endeavor, this article presents the free vibration of composite plates reinforced with graphene platelets (GPLs) based on the higher-order shear deformation plate theory. Moreover, it is assumed that the material properties are temperature dependent and are graded in the thickness direction. It is assumed that GPLs randomly spread out in each individual composite layer reinforced with graphene platelets. The theoretical formulation is derived based on higher-order shear deformation plate theory and the initial thermal stresses are evaluated by solving the thermo-elastic equilibrium equations. The Halpin–Tsai micromechanical model is used to evaluate the effective material properties of every layer of composite plates reinforced GPLs. Further, the Navier solution has been used to derive the governing equations of motion and evaluate the natural frequencies and dynamic response of simply supported graphene platelet reinforced composite plates. Four different GPL distribution pattern is modeled to find out its effect on the frequency of the plate and the other parameters. The result asserted that subjoining GPL to composite plates has a significant reinforcing effect on the free vibration of Graphene platelet reinforced composite (GPLRC) plates.
International Journal of Aeronautical & Space Sciences – Springer Journals
Published: Jun 21, 2019
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.