Access the full text.
Sign up today, get DeepDyve free for 14 days.
Multi-objective Optimization Through Soft Computing Approaches 3.1 Introduction Recently, agile and flexible manufacturing has been required to deal with diversified customer demands and global competition. The multi-objective optimization has been gaining interest as a decision aid sutable for those challenges. Accordingly, its importance might be intensified especially for real world problems in many fields. In this section, new methods for a multi- objective optimization problem (MOP) will be presented associated with the metaheuristic methods and the soft computing techniques. Generally, we can describe the MOP as a triplet like (x, f, x), similar to the usual single-objective optimization. However, it should be noticed that the objective function in this case is not a scalar but a vector. Consequently, the MOP is written, in general, by [Problem]min f (x)= {f (x),f (x),...,f (x)} 1 2 N subject to x ∈ X, where x denotes an n-dimensional decision variable vector, X a feasible region defined by a set of constraints, and f an N -dimensional objective function vector, some elements of which conflict and are incommensurable with each other. The conflicts occur when if one tries to improve a certain objective func- tion, at least one of the other objective functions
Published: Jan 1, 2007
Keywords: Pareto Front; Multiobjective Optimization; Soft Computing; Pareto Optimal Solution; Common Gateway Interface
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.