Access the full text.
Sign up today, get DeepDyve free for 14 days.
5. FURTHER INSIGHTS INTO BUBBLE PHYSICS The dynamics of cavitation bubbles is controlled mainly by inertia and pressure forces, as analysed in chapters 3 and 4. However, other physical phenomena may also have a non-negligible influence on their growth and collapse. These include: ® Liquid compressibility which affects the final stages of bubble collapse and causes the emission of shock waves and/or acoustic waves, essential in cavitation noise and erosion. ® Heat transfer between the entrapped gas and the surrounding liquid, which is decisive with regard to the phenomenon of sonoluminescence, i.e. light emission by collapsing bubbles, as it controls the temperature reached inside the bubble at the end of the collapse. ® Vaporization, which requires heat transfer and consequently temperature gradients between the liquid and the bubble and which is the cause of thermal delay in cavitation. This phenomenon is currently referred to as the thermo- dynamic effect. The present chapter is devoted to the presentation of the fundamental ideas and classical results concerning these problems. More detailed analyses can be found in books dedicated to specialized aspects, for example LAUTERBORN (1979), TREVENA (1987), LEIGHTON (1994). 5.1. THE EFFECT OF COMPRESSIBILITY 5.1.1. TAIT'S EQUATION OF STATE In order
Published: Jan 1, 2005
Keywords: Cavitation Bubble; Vapor Bubble; Bubble Radius; Cavitation Number; Spherical Bubble
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.