Access the full text.
Sign up today, get DeepDyve free for 14 days.
N. Djelal (2019)
10.3103/S0146411619030027Autom. Control Comput. Sci., 53
Zh. Xie (2020)
10.1016/j.actaastro.2020.06.028Acta Astronaut., 176
A. Sri Harsha (2021)
10.5829/IJE.2021.34.01A.30Int. J. Eng., 34
L. Tang (2020)
10.15961/j.jsuese.201801277Eng. Sci. Technol., 52
A. Gholami (2012)
10.1007/s11071-012-0602-0Nonlinear Dyn., 70
A. Al-khazraji (2011)
10.1016/j.engappai.2010.09.009Eng. Appl. Artif. Intell., 24
S. Wang (2020)
10.1155/2020/1492615Complexity, 2020
R.-J. Wai (2004)
10.1016/S0165-0114(03)00199-4Fuzzy Sets Syst., 143
F. Wang (2019)
10.1007/s10586-017-1538-4Cluster Comput., 22
C. Li (2018)
10.1109/TII.2018.2856108IEEE Trans. Ind. Inf., 15
Yu. Zhu (2018)
10.1109/ACCESS.2018.2825678IEEE Access, 6
M.-D. Tran (2016)
10.1007/s12541-016-0105-xInt. J. Precis. Eng. Manuf., 17
Z.-G. Wu (2020)
10.3390/s20113008Sensors, 20
M. Vijay (2018)
10.1016/j.compeleceng.2017.11.007Comput. Electr. Eng., 67
G. Wang (2019)
10.1155/2019/8650243Math. Probl. Eng., 2019
B.-T. Zhang (2016)
10.7641/CTA.2016.50960Control Theory Appl., 33
Z. Li (2021)
10.13433/j.cnki.1003-8728.20200038Mech. Sci. Technol., 40
S. Hu (2012)
10.3969/j.issn.0253-374x.2012.04.021J. Tongji Univ., 40
X. Guo (2018)
10.1080/21642583.2018.1542636Syst. Sci. Control Eng., 6
B. Brahim (2020)
10.1016/j.isatra.2019.08.010ISA Trans., 97
L. Yu (2014)
10.1007/s00034-013-9682-4Circuits, Syst., Signal Process., 33
H. Pan (2020)
10.1109/ACCESS.2020.3008169IEEE Access, 8
L. Liu (2021)
10.7652/xjtuxb202104001J. Xi’an Jiaotong Univ., 55
Aiming at the nonlinear and uncertain manipulator system, this paper proposes a fuzzy sliding mode control method based on disturbance observer and radial basis function (RBF) neural network, so that the manipulator can track a given trajectory with ideal dynamic quality. First, the nonlinear disturbance observer can accurately estimate the unknown disturbance, realize the feedforward compensation of the controller, and improve the accuracy of the controller, and then use the RBF neural network to approximate the uncertainty of the modelling and improve the robustness of the control system. At the same time, the fuzzy logic system is used to adaptively adjust the switching gain of sliding mode control, which effectively solves the chattering problem in sliding mode control. Finally, the Lyapunov stability theory is used to prove the stability of the control system, and the simulation verification is carried out. The simulation results show that the control algorithm effectively improves the tracking accuracy and tracking speed of the trajectory, and enhances the robustness to external disturbance.
Automatic Control and Computer Sciences – Springer Journals
Published: Apr 1, 2023
Keywords: manipulator system; nonlinear disturbance observer; RBF neural network; fuzzy sliding mode control
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.