Access the full text.
Sign up today, get DeepDyve free for 14 days.
The classical persistence algorithm computes the unique decomposition of a persistence module implicitly given by an input simplicial filtration. Based on matrix reduction, this algorithm is a cornerstone of the emergent area of topological data analysis. Its input is a simplicial filtration defined over the integers Z\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb {Z}}$$\end{document} giving rise to a 1-parameter persistence module. It has been recognized that multiparameter version of persistence modules given by simplicial filtrations over d-dimensional integer grids Zd\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb {Z}}^d$$\end{document} is equally or perhaps more important in data science applications. However, in the multiparameter setting, one of the main challenges is that topological summaries based on algebraic structure such as decompositions and bottleneck distances cannot be as efficiently computed as in the 1-parameter case because there is no known extension of the persistence algorithm to multiparameter persistence modules. We present an efficient algorithm to compute the unique decomposition of a finitely presented persistence module M defined over the multiparameter Zd\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb {Z}}^d$$\end{document}. The algorithm first assumes that the module is presented with a set of N generators and relations that are distinctly graded. Based on a generalized matrix reduction technique it runs in O(N2ω+1)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$O(N^{2\omega +1})$$\end{document} time where ω<2.373\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\omega <2.373$$\end{document} is the exponent of matrix multiplication. This is much better than the well known algorithm called Meataxe which runs in O~(N6(d+1))\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\tilde{O}}(N^{6(d+1)})$$\end{document} time on such an input. In practice, persistence modules are usually induced by simplicial filtrations. With such an input consisting of n simplices, our algorithm runs in O(n(d-1)(2ω+1))\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$O(n^{(d-1)(2\omega + 1)})$$\end{document} time for d≥2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$d\ge 2$$\end{document}. For the special case of zero dimensional homology, it runs in time O(n2ω+1)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$O(n^{2\omega +1})$$\end{document}.
Journal of Applied and Computational Topology – Springer Journals
Published: Sep 1, 2022
Keywords: Multiparameter persistence; Computational topology; Topological data analysis; Persistence module; Indecomposables; Matrix reduction; Presentations; 55-08; 55U30; 18G90
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.