Access the full text.
Sign up today, get DeepDyve free for 14 days.
[This chapter discusses classification, geometry, and design of straight flute and twist drills. It argues that the design, manufacturing, and implementation practices of drills are lagging behind the achievements in the tool materials, powerful high-speed-spindles rigid machines, and high-pressure MWF (coolant) supply. Although the wide availability CAD design tool and CNC precision grinding machines make it possible to reproduce any drill geometry, have not many new drill designs become available recently. The chapter points out that the prime objective of the drilling system is an increase in the drill penetration rate, i.e., in drilling productivity as the prime source for potential cost savings. As the major problem is in understanding particularities of drill geometry and its components, this chapter walks the reader from simple concepts starting from the basic terminology in drill design and geometry to the most complicated concepts in the field, keeping the context to the simplest possible fashion and providing practical examples. It provides an overview of important results concerning drill geometry and synthesizes the most relevant findings in the field with the practice of tool design.]
Published: Jan 1, 2010
Keywords: Rake Angle; Rake Face; Uncut Chip Thickness; Twist Drill; Point Angle
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.