Access the full text.
Sign up today, get DeepDyve free for 14 days.
P. Baras, M. Pierre (1984)
Problems paraboliques semi-lineaires avec donnees measuresApplicable Analysis, 18
M. Winkler (2018)
A critical blow-up exponent in a chemotaxis system with nonlinear signal productionNonlinearity, 31
O. Ladyzhenskai︠a︡, V. Solonnikov, N. Uralʹt︠s︡eva (1995)
Linear and Quasi-linear Equations of Parabolic Type
H. Triebel (1978)
Interpolation Theory, Function Spaces, Differential Operators
M. Winkler (2019)
The role of superlinear damping in the construction of solutions to drift-diffusion problems with initial data in L1Advances in Nonlinear Analysis, 9
E. Keller, L. Segel (1970)
Initiation of slime mold aggregation viewed as an instability.Journal of theoretical biology, 26 3
M. Dauge, M. Pogu (1988)
Existence et régularité de la fonction potentiel pour des écoulements subcritiques s'établissant autour d'un corps à singularité coniqueAnnales de la Faculté des Sciences de Toulouse, 9
(1992)
S.:On explosions of solutions to a systemof partial differential equationsmodeling chemotaxis
(1993)
Mathematical Biology, Biomathematics, XIV, 770
J. Tello, M. Winkler (2007)
A Chemotaxis System with Logistic SourceCommunications in Partial Differential Equations, 32
H. Brezis, W. Strauss (1973)
Semi-linear second-order elliptic equations in L 1Journal of The Mathematical Society of Japan, 25
(1986)
Compact sets in the space L p(0, T ; B)
M. Pierre (2010)
Global Existence in Reaction-Diffusion Systems with Control of Mass: a SurveyMilan Journal of Mathematics, 78
R. Martin, M. Pierre (1992)
Nonlinear Reaction-Diffusion SystemsMathematics in science and engineering, 185
Koichi Osaki, T. Tsujikawa, A. Yagi, M. Mimura (2002)
Exponential attractor for a chemotaxis-growth system of equationsNonlinear Analysis-theory Methods & Applications, 51
H Brézis, WA Strauss (1973)
Semi-linear second-order elliptic equations in L1J. Math. Soc. Jpn., 25
S. Agmon, A. Douglis, L. Nirenberg (1959)
Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. ICommunications on Pure and Applied Mathematics, 12
P Baras (1984)
111Appl. Anal., 18
J Simon (1986)
Compact sets in the space Lp(0,T?B)\documentclass[12pt]{minimal}Annali di Matematica, 146
M. Winkler (2010)
Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel modelJournal of Differential Equations, 248
M Winkler (2013)
Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel systemJ. Math. Pures Appl., 100
S Agmon (1959)
623I Commun. Pure Appl. Math., 12
G Viglialoro (2017)
Boundedness properties of very weak solutions to a fully parabolic chemotaxis-system with logistic sourceNonlinear Anal. Real World Appl., 34
(2003)
From 1970 until now: the Keller-Segal model in chaemotaxis and its consequence I
C. Patlak (1953)
Random walk with persistence and external biasBulletin of Mathematical Biology, 15
Zhian Wang, Tian Xiang (2015)
A class of chemotaxis systems with growth source and nonlinear secretionarXiv: Analysis of PDEs
H Lefraich, L Taourirte, H Khalfi, N Alaa (2019)
On the existence of global weak solutions to a generalized Keller Segel model with arbitrary growth and nonlinear signal productionAnnal. Univ. Craiova-Math. Computer Sci. Series, 46
G. Viglialoro (2017)
Boundedness properties of very weak solutions to a fully parabolic chemotaxis-system with logistic sourceNonlinear Analysis-real World Applications, 34
M. Winkler (2011)
Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel systemarXiv: Analysis of PDEs
Xuguang Yang, B. Shi, Z. Chai (2014)
Coupled lattice Boltzmann method for generalized Keller-Segel chemotaxis modelComput. Math. Appl., 68
T. Hillen, K Painter, K. Painter
A User's Guide to Pde Models for Chemotaxis
M. Mimura, T. Tsujikawa (1996)
Aggregating pattern dynamics in a chemotaxis model including growthPhysica A-statistical Mechanics and Its Applications, 230
(1977)
Etude de la classe des opérateurs m-accrétifs de L1(R) et accrétifs dans L∞(R)„ Thèse de 3ème cycle, Un
CS Patlak (1953)
Random walk with persistence and external biasBull. Math. Biophys., 15
E. Nakaguchi, Koichi Osaki (2013)
GLOBAL SOLUTIONS AND EXPONENTIAL ATTRACTORS OF A PARABOLIC-PARABOLIC SYSTEM FOR CHEMOTAXIS WITH SUBQUADRATIC DEGRADATIONDiscrete and Continuous Dynamical Systems-series B, 18
J. Frehse, M. Specovius-Neugebauer (2009)
Existence of regular solutions to a class of parabolic systems in two space dimensions with critical growth behaviourANNALI DELL'UNIVERSITA' DI FERRARA, 55
H. Choe, Bataa Lkhagvasuren (2017)
An extension criterion for the local in time solution of the chemotaxis Navier–Stokes equations in the critical Besov spacesANNALI DELL'UNIVERSITA' DI FERRARA, 63
Georges Chamoun (2014)
ÉTUDE MATHÉMATIQUE ET NUMÉRIQUE DE MODÈLES EN CHIMIOTAXIE-FLUIDE ET APPLICATIONS À LA BIOLOGIE
M. Winkler (2008)
Chemotaxis with logistic source : Very weak global solutions and their boundedness propertiesJournal of Mathematical Analysis and Applications, 348
H. Lefraich, Laila Taourirte, H. Khalfi, N. Alaa (2019)
On the existence of global weak solutions to a generalized Keller Segel model with arbitrary growth and nonlinear signal productionAnnals of the University of Craiova - Mathematics and Computer Science Series, 46
M. Winkler (2010)
Boundedness in the Higher-Dimensional Parabolic-Parabolic Chemotaxis System with Logistic SourceCommunications in Partial Differential Equations, 35
G. Viglialoro (2016)
Very weak global solutions to a parabolic–parabolic chemotaxis-system with logistic sourceJournal of Mathematical Analysis and Applications, 439
V. Bogachev (2007)
The spaces Lp and spaces of measures
Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations
S Agmon, A Douglis, L Nirenberg (1959)
Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditionsI Commun. Pure Appl. Math., 12
In this work, we analyze the global existence for the Keller-Segel model with initial data only in L1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L^1$$\end{document}. Classical techniques to prove global existence that are based on estimates in L∞\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L^{\infty } $$\end{document} cannot be applied due to the lack of regularity, and a new approach must be considered to overcome these difficulties. Finally, we provide an example of non-existence of solution in the case where the initial data is only a bounded Radon measure.
ANNALI DELL UNIVERSITA DI FERRARA – Springer Journals
Published: May 1, 2023
Keywords: Keller-Segel; Chemotaxis; “j” technique; L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document} initial data; Uniform integrability; 35D30; 35B45; 35K55; 35K57
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.