Access the full text.
Sign up today, get DeepDyve free for 14 days.
M. Fiedler (1995)
An estimate for the nonstochastic eigenvalues of doubly stochastic matricesLinear Algebra and its Applications, 214
G. Casella, I. Olkin, S. Fienberg (2021)
Testing Statistical HypothesesProbability and Statistical Inference, Third Edition
Stéphane Lafon, Weiqiang Jing (2006)
Diffusion maps
S. Oudot (2015)
Persistence Theory - From Quiver Representations to Data Analysis, 209
N. Shervashidze, S. Vishwanathan, Tobias Petri, K. Mehlhorn, K. Borgwardt (2009)
Efficient graphlet kernels for large graph comparison
HighWire Press
Philosophical transactions of the Royal Society of London. Series A, Containing papers of a mathematical or physical character
A. Zomorodian (2010)
Computational topology
A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf, Alex Smola (2012)
A Kernel Two-Sample TestJ. Mach. Learn. Res., 13
S. Soundarajan, Tina Eliassi-Rad, Brian Gallagher (2014)
A Guide to Selecting a Network Similarity Method
(2020)
Author Correction: GRAFENE: Graphlet-based alignment-free network approach integrates 3D structural and sequence (residue order) data to improve protein structural comparison
Waqar Ali, T. Rito, G. Reinert, Fengzhu Sun, C. Deane (2014)
Alignment-free protein interaction network comparisonBioinformatics, 30
M. Kosorok (2008)
Introduction to Empirical Processes and Semiparametric Inference
Jian Sun, M. Ovsjanikov, L. Guibas (2009)
A concise and provably informative multi-scale signature based on heat diffusion, 28
Mattia Tantardini, F. Ieva, L. Tajoli, C. Piccardi (2019)
Comparing methods for comparing networksScientific Reports, 9
Günter Rote, Gert Vegter (2007)
Effective Computational Geometry for Curves and Surfaces Chapter 7 Computational Topology : An Introduction
W Ali (2014)
i430Bioinformatics, 30
R. Coifman, M. Hirn (2012)
Diffusion maps for changing dataArXiv, abs/1209.0245
Nils Kriege, Fredrik Johansson, Christopher Morris (2019)
A survey on graph kernelsApplied Network Science, 5
Giannis Siglidis, Giannis Nikolentzos, Stratis Limnios, C. Giatsidis, Konstantinos Skianis, M. Vazirgiannis (2018)
GraKeL: A Graph Kernel Library in PythonJ. Mach. Learn. Res., 21
P. Erdos, A. Rényi (1984)
On the evolution of random graphsTransactions of the American Mathematical Society, 286
C. Faloutsos, Danai Koutra, J. Vogelstein (2013)
DELTACON: A Principled Massive-Graph Similarity FunctionArXiv, abs/1304.4657
Philippe Berthet, D. Mason (2006)
Revisiting two strong approximation results of Dudley and PhilipparXiv: Statistics Theory
(2003)
Heat diffusion distance processes
Natasa Przulj, D. Corneil, I. Jurisica (2004)
Modeling interactome: scale-free or geometric?Bioinformatics, 20 18
F. Emmert-Streib, M. Dehmer, Yongtang Shi (2016)
Fifty years of graph matching, network alignment and network comparisonInf. Sci., 346-347
Chris Cannings (2005)
Random Geometric GraphsJournal of The Royal Statistical Society Series A-statistics in Society, 168
A. Faivre, E. Robinet, M. Guye, Celia Rousseau, A. Maarouf, A. Troter, W. Zaaraoui, A. Rico, L. Crespy, E. Soulier, S. Confort-Gouny, J. Pelletier, S. Achard, J. Ranjeva, B. Audoin (2016)
Depletion of brain functional connectivity enhancement leads to disability progression in multiple sclerosis: A longitudinal resting-state fMRI studyMultiple Sclerosis Journal, 22
J. Cima, A. Matheson (1996)
On weak* convergence in ¹, 124
Y. Nakatsukasa, N. Higham (2013)
Stable and Efficient Spectral Divide and Conquer Algorithms for the Symmetric Eigenvalue Decomposition and the SVDSIAM J. Sci. Comput., 35
Shohei Hido, H. Kashima (2009)
A Linear-Time Graph Kernel2009 Ninth IEEE International Conference on Data Mining
F. Faisal, Khalique Newaz, Julie Chaney, Jun Li, S. Emrich, P. Clark, T. Milenković (2017)
GRAFENE: Graphlet-based alignment-free network approach integrates 3D structural and sequence (residue order) data to improve protein structural comparisonScientific Reports, 7
D. Watts, S. Strogatz (1998)
Collective dynamics of ‘small-world’ networksNature, 393
D. Hammond, Yaniv Gur, Chris Johnson (2013)
Graph diffusion distance: A difference measure for weighted graphs based on the graph Laplacian exponential kernel2013 IEEE Global Conference on Signal and Information Processing
N. Shervashidze, Pascal Schweitzer, E. Leeuwen, K. Mehlhorn, K. Borgwardt (2011)
Weisfeiler-Lehman Graph KernelsJ. Mach. Learn. Res., 12
R. Bass (2011)
Convergence of probability measures
Sibylle Marcotte, Amélie Barbe, R. Gribonval, Titouan Vayer, M. Sebban, P. Borgnat, Paulo Gonçalves (2021)
Fast Multiscale Diffusion On GraphsICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Ralucca Gera, L. Alonso, Brian Crawford, Jeffrey House, J. Méndez-Bermúdez, Thomas Knuth, Ryan Miller (2018)
Identifying network structure similarity using spectral graph theoryApplied Network Science, 3
J. Neyman, E. Pearson (1933)
On the Problem of the Most Efficient Tests of Statistical HypothesesPhilosophical Transactions of the Royal Society A, 231
Nan Hu, R. Rustamov, L. Guibas (2013)
Stable and Informative Spectral Signatures for Graph Matching2014 IEEE Conference on Computer Vision and Pattern Recognition
M. Penrose (2003)
Random geometric graphs.Vol. 5.
P. Holland, Kathryn Laskey, S. Leinhardt (1983)
Stochastic blockmodels: First stepsSocial Networks, 5
K. Borgwardt, H. Kriegel (2005)
Shortest-path kernels on graphsFifth IEEE International Conference on Data Mining (ICDM'05)
F. Farahani, W. Karwowski, N. Lighthall (2019)
Application of Graph Theory for Identifying Connectivity Patterns in Human Brain Networks: A Systematic ReviewFrontiers in Neuroscience, 13
Richard Wilson, Ping Zhu (2008)
A study of graph spectra for comparing graphs and treesPattern Recognit., 41
Natasa Przulj (2007)
Biological network comparison using graphlet degree distributionBioinformatics, 23 2
Ömer Yaveroğlu, N. Malod-Dognin, Darren Davis, Zoran Levnajic, Vuk Janjic, R. Karapandža, A. Stojmirović, Natasa Przulj (2014)
Revealing the Hidden Language of Complex NetworksScientific Reports, 4
RR Coifman, MJ Hirn (2014)
Diffusion maps for changing dataAppl. Comput. Harmon. Anal., 36
J Neyman, ES Pearson (1933)
Ix. On the problem of the most efficient tests of statistical hypothesesPhilos. Trans. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Char., 231
P Erdos, A Rényi (1960)
On the evolution of random graphsPubl. Math. Inst. Hung. Acad. Sci., 5
M. Sugiyama, K. Borgwardt (2015)
Halting in Random Walk Kernels
F. Chazal, V. Silva, M. Glisse, S. Oudot (2012)
The Structure and Stability of Persistence ModulesArXiv, abs/1207.3674
Anton Tsitsulin, D. Mottin, Panagiotis Karras, A. Bronstein, Emmanuel Müller (2018)
NetLSD: Hearing the Shape of a GraphProceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
M. Rocca, P. Valsasina, A. Meani, A. Falini, G. Comi, M. Filippi (2014)
Impaired functional integration in multiple sclerosis: a graph theory studyBrain Structure and Function, 221
Mathieu Carrière, F. Chazal, Yuichi Ike, Théo Lacombe, Martin Royer, Y. Umeda (2019)
PersLay: A Neural Network Layer for Persistence Diagrams and New Graph Topological Signatures
D. Cohen-Steiner, H. Edelsbrunner, J. Harer (2009)
Extending Persistence Using Poincaré and Lefschetz DualityFoundations of Computational Mathematics, 9
Clément Maria, J. Boissonnat, M. Glisse, M. Yvinec (2014)
The Gudhi Library: Simplicial Complexes and Persistent Homology
G. Castellazzi, L. Debernard, T. Melzer, J. Dalrymple-Alford, E. D’Angelo, David Miller, C. Wheeler-Kingshott, D. Mason (2018)
Functional Connectivity Alterations Reveal Complex Mechanisms Based on Clinical and Radiological Status in Mild Relapsing Remitting Multiple SclerosisFrontiers in Neurology, 9
M. Kosorok (2008)
Introduction to Empirical Processes
Fredrik Johansson, Vinay Jethava, Devdatt Dubhashi, C. Bhattacharyya (2014)
Global graph kernels using geometric embeddings
T. Mikosch, A. Vaart, J. Wellner (1996)
Weak Convergence and Empirical Processes: With Applications to Statistics
We propose two multiscale comparisons of graphs using heat diffusion, allowing to compare graphs without node correspondence or even with different sizes. These multiscale comparisons lead to the definition of Lipschitz-continuous empirical processes indexed by a real parameter. The statistical properties of empirical means of such processes are studied in the general case. Under mild assumptions, we prove a functional central limit theorem, as well as a Gaussian approximation with a rate depending only on the sample size. Once applied to our processes, these results allow to analyze data sets of pairs of graphs. We design consistent confidence bands around empirical means and consistent two-sample tests, using bootstrap methods. Their performances are evaluated by simulations on synthetic data sets.
Journal of Applied and Computational Topology – Springer Journals
Published: May 18, 2023
Keywords: Graphs; Two-sample tests; Empirical processes; Topological data analysis; Primary 05C50; 60J60; 60F05; Secondary 55N31; 62G15; 62G10
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.