Access the full text.
Sign up today, get DeepDyve free for 14 days.
C. Rowley, I. Mezić, S. Bagheri, P. Schlatter, D. Henningson (2009)
Spectral analysis of nonlinear flowsJournal of Fluid Mechanics, 641
Travis Manderson, Sandeep Manjanna, G. Dudek (2019)
Heterogeneous Robot Teams for Informative SamplingArXiv, abs/1906.07208
KrauseAndreas, SinghAjit, GuestrinCarlos (2008)
Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical StudiesJournal of Machine Learning Research
J. Cortés, S. Martínez, Timur Karatas, F. Bullo (2002)
Coverage control for mobile sensing networksIEEE Transactions on Robotics and Automation, 20
Amarjeet Singh, F. Ramos, H. Durrant-Whyte, W. Kaiser (2010)
Modeling and decision making in spatio-temporal processes for environmental surveillance2010 IEEE International Conference on Robotics and Automation
Tahiya Salam, M. Hsieh (2019)
Adaptive Sampling and Reduced-Order Modeling of Dynamic Processes by Robot TeamsIEEE Robotics and Automation Letters, 4
S. Zalesak, J. Drake, J. Huba (1988)
Dynamics of three‐dimensional ionospheric plasma cloudsRadio Science, 23
Krithika Manohar, Bingni Brunton, J. Kutz, S. Brunton (2017)
Data-Driven Sparse Sensor Placement for Reconstruction: Demonstrating the Benefits of Exploiting Known PatternsIEEE Control Systems, 38
Edith University, Edith Cowan (2011)
Mobile Sensor Network
S. Ounpraseuth (2008)
Gaussian Processes for Machine LearningJournal of the American Statistical Association, 103
E. Jones, Brett Browning, M. Dias, B. Argall, M. Veloso, A. Stentz (2006)
Dynamically formed heterogeneous robot teams performing tightly-coordinated tasksProceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006.
Andreas Krause, A. Singh, Carlos Guestrin (2008)
Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical StudiesJ. Mach. Learn. Res., 9
(2002)
Incremental singular value decomposition (SVD) of incomplete data
N. Erichson, S. Brunton, J. Kutz (2015)
Compressed dynamic mode decomposition for background modelingJournal of Real-Time Image Processing
J. Bae, Jungho Lee, W. Chung (2019)
A Heuristic for Task Allocation and Routing of Heterogeneous Robots while Minimizing Maximum Travel Cost2019 International Conference on Robotics and Automation (ICRA)
Sebahattin Topal, smet Erkmen, A. Erkmen
A Novel Map Merging Methodology for Multi-Robot Systems
(2015)
A (2015) Multi-robot task
A. Prorok, M. Hsieh, Vijay Kumar (2016)
Formalizing the impact of diversity on performance in a heterogeneous swarm of robots2016 IEEE International Conference on Robotics and Automation (ICRA)
María Santos, M. Egerstedt (2018)
Coverage Control for Multi-Robot Teams with Heterogeneous Sensing Capabilities Using Limited Communications*2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Sandeep Manjanna, Alberto Li, Ryan Smith, Ioannis Rekleitis, G. Dudek (2018)
Heterogeneous Multi-Robot System for Exploration and Strategic Water Sampling2018 IEEE International Conference on Robotics and Automation (ICRA)
Amarjeet Singh, Andreas Krause, Carlos Guestrin, W. Kaiser (2014)
Efficient Informative Sensing using Multiple RobotsJ. Artif. Intell. Res., 34
I. Mezić (2005)
Spectral Properties of Dynamical Systems, Model Reduction and DecompositionsNonlinear Dynamics, 41
Jinyoung Park, A. Sinclair, Ryan Sherrill, E. Doucette, J. Curtis (2016)
Map merging of rotated, corrupted, and different scale maps using rectangular features2016 IEEE/ION Position, Location and Navigation Symposium (PLANS)
L. Parker (2008)
THE EFFECT OF HETEROGENEITY IN TEAMS OF 100+ MOBILE ROBOTS
Parikshit Maini, Gautam Gupta, Pratap Tokekar, P. Sujit (2018)
Visibility-Based Monitoring of a Path Using a Heterogeneous Robot Team2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Armin Sadeghi, Stephen Smith (2019)
Coverage Control for Multiple Event Types with Heterogeneous Robots2019 International Conference on Robotics and Automation (ICRA)
A. Prorok, M. Hsieh, Vijay Kumar (2016)
Fast Redistribution of a Swarm of Heterogeneous Robots
JH Tu, CW Rowley, DM Luchtenburg, SL Brunton, JN Kutz (2013)
On dynamic mode decomposition?Theory and applicationsJournal of Computational Dynamics, 66
S. Joshi, Stephen Boyd (2009)
Sensor Selection via Convex OptimizationIEEE Transactions on Signal Processing, 57
Chang‐Duo Liang, Leimin Wang, Xiang‐Yu Yao, Zhiwei Liu, Ming‐Feng Ge (2019)
Multi-target tracking of networked heterogeneous collaborative robots in task spaceNonlinear Dynamics
Gennaro Notomista, Siddharth Mayya, S. Hutchinson, M. Egerstedt (2019)
An Optimal Task Allocation Strategy for Heterogeneous Multi-Robot Systems2019 18th European Control Conference (ECC)
Saeed Shahbandi, Martin Magnusson (2017)
2D map alignment with region decompositionAutonomous Robots, 43
Erik Berger, M. Sastuba, David Vogt, B. Jung, H. Amor (2015)
Estimation of perturbations in robotic behavior using dynamic mode decompositionAdvanced Robotics, 29
M. Jovanovi'c, P. Schmid, J. Nichols (2012)
Sparsity-promoting dynamic mode decompositionPhysics of Fluids, 26
P. Schmid, P. Ecole (2008)
Dynamic mode decomposition of numerical and experimental dataJournal of Fluid Mechanics, 656
K Taira, SL Brunton, ST Dawson, CW Rowley, T Colonius, BJ McKeon, OT Schmidt, S Gordeyev, V Theofilis, LS Ukeiley (2017)
Modal analysis of fluid flows: An overviewAIAA Journal, 55
María Santos, Y. Diaz-Mercado, M. Egerstedt (2018)
Coverage Control for Multirobot Teams With Heterogeneous Sensing CapabilitiesIEEE Robotics and Automation Letters, 3
C. Rossi, L. Aldama, A. Barrientos (2009)
Simultaneous task subdivision and allocation for teams of heterogeneous robots2009 IEEE International Conference on Robotics and Automation
Yunfei Xu, Jongeun Choi, Songhwai Oh (2011)
Mobile Sensor Network Navigation Using Gaussian Processes With Truncated ObservationsIEEE Transactions on Robotics, 27
N. Demo, M. Tezzele, G. Rozza (2018)
PyDMD: Python Dynamic Mode DecompositionJ. Open Source Softw., 3
Daiki Matsumoto, T. Indinger (2017)
On-the-fly algorithm for Dynamic Mode Decomposition using Incremental Singular Value Decomposition and Total Least SquaresarXiv: Fluid Dynamics
K. Willcox (2004)
Unsteady Flow Sensing and Estimation via the Gappy Proper Orthogonal DecompositionComputers & Fluids, 35
R. Everson, L. Sirovich (1995)
Karhunen–Loève procedure for gappy dataJournal of The Optical Society of America A-optics Image Science and Vision, 12
A. Vasilijevic, P. Calado, F. López-Castejón, D. Hayes, N. Stilinovic, D. Nad, F. Mandic, P. Dias, J. Gomes, J. Molina, A. Guerrero, J. Gilabert, N. Mišković, Z. Vukic, J. Sousa, G. Georgiou (2015)
Heterogeneous robotic system for underwater oil spill surveyOCEANS 2015 - Genova
C. Folkestad, Daniel Pastor, I. Mezić, Ryan Mohr, M. Fonoberova, J. Burdick (2019)
Extended Dynamic Mode Decomposition with Learned Koopman Eigenfunctions for Prediction and Control2020 American Control Conference (ACC)
Andreas Krause, Carlos Guestrin (2007)
Nonmyopic active learning of Gaussian processes: an exploration-exploitation approach
Hao Zhang, C. Rowley, Eric Deem, L. Cattafesta (2017)
Online dynamic mode decomposition for time-varying systemsArXiv, abs/1707.02876
Bingni Brunton, Lise Johnson, J. Ojemann, J. Kutz (2014)
Extracting spatial–temporal coherent patterns in large-scale neural recordings using dynamic mode decompositionJournal of Neuroscience Methods, 258
Krithika Manohar, E. Kaiser, S. Brunton, J. Kutz (2017)
Optimized Sampling for Multiscale DynamicsMultiscale Model. Simul., 17
ST Zalesak, JF Drake, JD Huba (1987)
Dynamics of three dimensional ionospheric plasma cloudsPhysical Review Letters, 58
Jonathan Tu, C. Rowley, D. Luchtenburg, S. Brunton, J. Kutz (2013)
On dynamic mode decomposition: Theory and applicationsACM Journal of Computer Documentation, 1
Brian Julian, M. Angermann, M. Schwager, D. Rus (2012)
Distributed robotic sensor networks: An information-theoretic approachThe International Journal of Robotics Research, 31
Liang Ma, Jihua Zhu, Li Zhu, S. Du, Jingru Cui (2015)
Merging grid maps of different resolutions by scaling registrationRobotica, 34
F. Nashashibi, M. Devy, P. Fillatreau (1992)
Indoor scene terrain modeling using multiple range images for autonomous mobile robotsProceedings 1992 IEEE International Conference on Robotics and Automation
K. Taira, S. Brunton, Scott Dawson, C. Rowley, T. Colonius, B. McKeon, O. Schmidt, S. Gordeyev, V. Theofilis, L. Ukeiley (2017)
Modal Analysis of Fluid Flows: An OverviewarXiv: Fluid Dynamics
M. Dunbabin, Lino Marques (2012)
Robots for Environmental Monitoring: Significant Advancements and ApplicationsIEEE Robotics & Automation Magazine, 19
M. Budišić, Ryan Mohr, I. Mezić (2012)
Applied Koopmanism.Chaos, 22 4
(1994)
Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, engineering
I Andersone (2019)
1Robotics, 8
Brian Gerkey, M. Matarić (2004)
A Formal Analysis and Taxonomy of Task Allocation in Multi-Robot SystemsThe International Journal of Robotics Research, 23
A. Khamis, A. Hussein, Ahmed Elmogy (2015)
Multi-robot Task Allocation: A Review of the State-of-the-Art
G. Korsah, A. Stentz, M. Dias (2013)
A comprehensive taxonomy for multi-robot task allocationThe International Journal of Robotics Research, 32
Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations
Ilze Andersone (2019)
Heterogeneous Map Merging: State of the ArtRobotics, 8
This paper presents a framework to enable a team of heterogeneous mobile robots to model and sense a multiscale system. We propose a coupled strategy, where robots of one type collect high-fidelity measurements at a slow time scale and robots of another type collect low-fidelity measurements at a fast time scale, for the purpose of fusing measurements together. The multiscale measurements are fused to create a model of a complex, nonlinear spatiotemporal process. The model helps determine optimal sensing locations and predict the evolution of the process. Key contributions are: (i) consolidation of multiple types of data into one cohesive model, (ii) fast determination of optimal sensing locations for mobile robots, and (iii) adaptation of models online for various monitoring scenarios. We illustrate the proposed framework by modeling and predicting the evolution of an artificial plasma cloud. We test our approach using physical marine robots adaptively sampling a process in a water tank.
Autonomous Robots – Springer Journals
Published: Apr 1, 2023
Keywords: Environment monitoring; Heterogeneity; Multi-robot systems; Marine robots
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.