Access the full text.
Sign up today, get DeepDyve free for 14 days.
Intense heat waves pose a serious threat to public health and well-being, especially in outdoor spaces. Outdoor high-temperature environments without air conditioners are major challenges for humanity. However, an achievable approach that can provide outdoor cooling without consuming any energy is lacking. Hence, this work presents a novel hierarchical fabric emitter (HFET) used for sunshade sheds to provide radiative outdoor cooling for humanity, the HFET is composed of polyethylene/silicon dioxide/silicon nitride film, melt-blown polypropylene film, and polydimethylsiloxane film from top to bottom. In addition to reflecting 94% solar irradiance by its top surface, the HFET shows selective emission (0.82 in the atmospheric window and 0.38 outside the atmospheric window) on its top surface to outer space and broadband absorption (0.80 in the longwave infrared band) on its bottom surface from the inside. This bidirectional asymmetric emission enables the simulated skin to avoid overheating by 2–11 °C relative to the reverse HFET and bare cases under direct sunlight. Due to its excellent cooling capability, the HFET will be one of the most considerable solutions for outdoor cooling in hot summer environments.Graphical Abstract[graphic not available: see fulltext]
Advanced Fiber Materials – Springer Journals
Published: Mar 16, 2023
Keywords: Passive radiative cooling; Selective emission; Broadband absorption; Bidirectional asymmetric emission; Fabric emitter
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.