Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Identification of recurring tumor-specific somatic mutations in acute myeloid leukemia by transcriptome sequencing

Identification of recurring tumor-specific somatic mutations in acute myeloid leukemia by... Genetic lesions are crucial for cancer initiation. Recently, whole genome sequencing, using next generation technology, was used as a systematic approach to identify mutations in genomes of various types of tumors including melanoma, lung and breast cancer, as well as acute myeloid leukemia (AML). Here, we identify tumor-specific somatic mutations by sequencing transcriptionally active genes. Mutations were detected by comparing the transcriptome sequence of an AML sample with the corresponding remission sample. Using this approach, we found five non-synonymous mutations specific to the tumor sample. They include a nonsense mutation affecting the RUNX1 gene, which is a known mutational target in AML, and a missense mutation in the putative tumor suppressor gene TLE4, which encodes a RUNX1 interacting protein. Another missense mutation was identified in SHKBP1, which acts downstream of FLT3, a receptor tyrosine kinase mutated in about 30% of AML cases. The frequency of mutations in TLE4 and SHKBP1 in 95 cytogenetically normal AML patients was 2%. Our study demonstrates that whole transcriptome sequencing leads to the rapid detection of recurring point mutations in the coding regions of genes relevant to malignant transformation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Leukemia Springer Journals

Identification of recurring tumor-specific somatic mutations in acute myeloid leukemia by transcriptome sequencing

Loading next page...
 
/lp/springer-journals/identification-of-recurring-tumor-specific-somatic-mutations-in-acute-Lgz49oxAOb

References (33)

Publisher
Springer Journals
Copyright
Copyright © 2011 by Macmillan Publishers Limited
Subject
Medicine & Public Health; Medicine/Public Health, general; Internal Medicine; Intensive / Critical Care Medicine; Cancer Research; Oncology; Hematology
ISSN
0887-6924
eISSN
1476-5551
DOI
10.1038/leu.2011.19
Publisher site
See Article on Publisher Site

Abstract

Genetic lesions are crucial for cancer initiation. Recently, whole genome sequencing, using next generation technology, was used as a systematic approach to identify mutations in genomes of various types of tumors including melanoma, lung and breast cancer, as well as acute myeloid leukemia (AML). Here, we identify tumor-specific somatic mutations by sequencing transcriptionally active genes. Mutations were detected by comparing the transcriptome sequence of an AML sample with the corresponding remission sample. Using this approach, we found five non-synonymous mutations specific to the tumor sample. They include a nonsense mutation affecting the RUNX1 gene, which is a known mutational target in AML, and a missense mutation in the putative tumor suppressor gene TLE4, which encodes a RUNX1 interacting protein. Another missense mutation was identified in SHKBP1, which acts downstream of FLT3, a receptor tyrosine kinase mutated in about 30% of AML cases. The frequency of mutations in TLE4 and SHKBP1 in 95 cytogenetically normal AML patients was 2%. Our study demonstrates that whole transcriptome sequencing leads to the rapid detection of recurring point mutations in the coding regions of genes relevant to malignant transformation.

Journal

LeukemiaSpringer Journals

Published: Feb 22, 2011

There are no references for this article.