Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

In situ synthesis of FeS/Carbon fibers for the effective removal of Cr(VI) in aqueous solution

In situ synthesis of FeS/Carbon fibers for the effective removal of Cr(VI) in aqueous solution Iron sulfide (FeS) nanoparticles (termed FSNs) have attracted much attention for the removal of pollutants due to their high efficiency and low cost, and because they are environmentally friendly. However, issues of agglomeration, transformation, and the loss of active components limit their application. Therefore, this study investigates in situ synthesized FeS/carbon fibers with an Fecarrageenan biomass as a precursor and nontoxic sulfur source to ascertain the removal efficiency of the fibers. The enrichment of sulfate groups as well as the double-helix structure in ι-carrageenan-Fe could effectively avoid the aggregation and loss of FSNs in practical applications. The obtained FeS/ carbon fibers were used to control a Cr(VI) polluted solution, and exhibited a relatively high removal capacity (81.62 mg/g). The main mechanisms included the reduction of FeS, electrostatic adsorption of carbon fibers, and Cr(III)-Fe(III) complexation reaction. The pseudo-second-order kinetic model and Langmuir adsorption model both provided a good fit of the reaction process; hence, the removal process was mainly controlled by chemical adsorption, specifically monolayer adsorption on a uniform surface. Furthermore, co-existing anions, column, and regeneration experiments indicated that the FeS/ carbon fibers are a promising remediation material for practical application.[graphic not available: see fulltext] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png "Frontiers of Environmental Science & Engineering" Springer Journals

In situ synthesis of FeS/Carbon fibers for the effective removal of Cr(VI) in aqueous solution

Loading next page...
 
/lp/springer-journals/in-situ-synthesis-of-fes-carbon-fibers-for-the-effective-removal-of-cr-ODJzOgq5NB

References (35)

Publisher
Springer Journals
Copyright
Copyright © Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
ISSN
2095-2201
eISSN
2095-221X
DOI
10.1007/s11783-020-1247-8
Publisher site
See Article on Publisher Site

Abstract

Iron sulfide (FeS) nanoparticles (termed FSNs) have attracted much attention for the removal of pollutants due to their high efficiency and low cost, and because they are environmentally friendly. However, issues of agglomeration, transformation, and the loss of active components limit their application. Therefore, this study investigates in situ synthesized FeS/carbon fibers with an Fecarrageenan biomass as a precursor and nontoxic sulfur source to ascertain the removal efficiency of the fibers. The enrichment of sulfate groups as well as the double-helix structure in ι-carrageenan-Fe could effectively avoid the aggregation and loss of FSNs in practical applications. The obtained FeS/ carbon fibers were used to control a Cr(VI) polluted solution, and exhibited a relatively high removal capacity (81.62 mg/g). The main mechanisms included the reduction of FeS, electrostatic adsorption of carbon fibers, and Cr(III)-Fe(III) complexation reaction. The pseudo-second-order kinetic model and Langmuir adsorption model both provided a good fit of the reaction process; hence, the removal process was mainly controlled by chemical adsorption, specifically monolayer adsorption on a uniform surface. Furthermore, co-existing anions, column, and regeneration experiments indicated that the FeS/ carbon fibers are a promising remediation material for practical application.[graphic not available: see fulltext]

Journal

"Frontiers of Environmental Science & Engineering"Springer Journals

Published: Apr 25, 2020

There are no references for this article.