Access the full text.
Sign up today, get DeepDyve free for 14 days.
The formal random censoring plan has been extensively studied earlier in statistical literature by numerous researchers to deal with dropouts or unintentional random removals in life-testing experiments. All of them considered failure time and censoring time to be independent. But there are several situations in which one observes that as the failure time of an item increases, the censoring time decreases. In medical studies or especially in clinical trials, the occurrence of dropouts or unintentional removals is frequently observed in such a way that as the treatment (failure) time increases, the dropout (censoring) time decreases. No work has yet been found that deals with such correlated failure and censoring times. Therefore, in this article, we assume that the failure time is negatively correlated with censoring time, and they follow Gumbel’s type-I bivariate exponential distribution. We compute the maximum likelihood estimates of the model parameters. Using the Monte Carlo Markov chain methods, the Bayesian estimators of the parameters are calculated. The expected experimental time is also evaluated. Finally, for illustrative purposes, a numerical study and a real data set analysis are given.
Annals of Data Science – Springer Journals
Published: Jan 31, 2023
Keywords: Correlated random censoring; Gumbel’s type-I bivariate exponential distribution; Bayesian estimation; MCMC methods; Expected experimental time; 62N01; 62N02; 62F10; 62F15
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.