Access the full text.
Sign up today, get DeepDyve free for 14 days.
[Advancements in technology developed in the early nineties have enabled researchers to successfully apply techniques of evolutionary computation in various problem domains. As a consequence, a new research direction referred to as evolvable hardware (EHW) focusing on the use of evolutionary algorithms to create specialized electronics has emerged. One of the goals of the early pioneers of EHW was to evolve complex circuits and overcome the limits of traditional design. Unfortunately, evolvable hardware found itself in a critical stage around 2010 and a very pessimistic future for EHW-based digital circuit synthesis was predicted. The problems solved by the community were of the size and complexity of that achievable in fifteens years ago and seldom compete with traditional designs. The scalability problem has been identified as one of the most difficult problems that researchers are faced with and it was not clear whether there existed a path forward that would allow the field to progress. Despite that, researchers have continued to investigate how to overcome the scalability issues and significant progress has been made in the area of evolutionary synthesis of digital circuits in recent years. The goal of this chapter is to summarize the progress in the evolutionary synthesis of gate-level digital circuits, and to identify the challenges that need to be addressed to enable evolutionary methods to penetrate into industrial practice.]
Published: Oct 27, 2017
Keywords: Cartesian Genetic Programming (CGP); Digital Circuits; Circuit Complexity; Evolutionary Circuit Design; Conventional Synthesis Tools
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.