Access the full text.
Sign up today, get DeepDyve free for 14 days.
M. Sugiyama, S. Fujimori, K. Wada, K. Oshiro, Etsushi Kato, Ryoichi Komiyama, Diego Herran, Yuhji Matsuo, Hiroto Shiraki, Yiyi Ju (2021)
EMF 35 JMIP study for Japan’s long-term climate and energy policy: scenario designs and key findingsSustainability Science, 16
O. Saito, Shizuka Hashimoto, Shunsuke Managi, Masahiro Aiba, Takehisa Yamakita, R. Dasgupta, K. Takeuchi (2019)
Future scenarios for socio-ecological production landscape and seascapeSustainability Science, 14
André Lucena, L. Clarke, R. Schaeffer, A. Szklo, P. Rochedo, L. Nogueira, Kathryn Daenzer, A. Gurgel, A. Kitous, T. Kober (2016)
Climate Policy Scenarios in Brazil: a Multi-Model Comparison for EnergyEnergy Economics, 56
K. Oshiro, K. Gi, S. Fujimori, H. Soest, C. Bertram, J. Després, T. Masui, P. Rochedo, Mark Roelfsema, Z. Vrontisi (2019)
Mid-century emission pathways in Japan associated with the global 2 °C goal: national and global models’ assessments based on carbon budgetsClimatic Change, 162
Ipcc (2022)
Global Warming of 1.5°C
Hiroto Shiraki, M. Sugiyama, Yuhji Matsuo, Ryoichi Komiyama, S. Fujimori, Etsushi Kato, K. Oshiro, D. Silva (2021)
The role of renewables in the Japanese power sector: implications from the EMF35 JMIPSustainability Science, 16
T. Morita, N. Nakićenović, John Robinson (2000)
Overview of mitigation scenarios for global climate stabilization based on new IPCC emission scenarios (SRES)Environmental Economics and Policy Studies, 3
T. Spencer, Roberta Pierfederici, H. Waisman, M. Colombier, C. Bertram, E. Kriegler, Gunnar Luderer, Florian Humpenöder, A. Popp, O. Edenhofer, M. Elzen, D. Vuuren, H. Soest, M. Kainuma, T. Masui, K. Oshiro, Keigo Akimoto, B. Tehrani, F. Sano, Junichiro Oda, A. Köberle, A. Szklo, André Lucena, J. Portugal-Pereira, P. Rochedo, Aayushi Awasthy, M. Shrivastava, R. Mathur, J. Rogelj, J. Jewell, K. Riahi (2015)
Beyond the Numbers: Understanding the Transformation Induced by INDCs
Diego Herran, S. Fujimori (2021)
Beyond Japanese NDC: energy and macroeconomic transitions towards 2050 in emission pathways with multiple ambition levelsSustainability Science, 16
Felix Schreyer, Gunnar Luderer, Renato Rodrigues, R. Pietzcker, Lavinia Baumstark, M. Sugiyama, R. Brecha, F. Ueckerdt (2020)
Common but differentiated leadership: strategies and challenges for carbon neutrality by 2050 across industrialized economiesEnvironmental Research Letters, 15
M. Sugiyama, S. Fujimori, S. Fujimori, K. Wada, Seiya Endo, Y. Fujii, Ryoichi Komiyama, Etsushi Kato, A. Kurosawa, Yuhji Matsuo, K. Oshiro, F. Sano, Hiroto Shiraki (2019)
Japan's long-term climate mitigation policy: Multi-model assessment and sectoral challengesEnergy
S. Fujimori, T. Hasegawa, T. Masui, Kiyoshi Takahashi, D. Herran, Hancheng Dai, Y. Hijioka, M. Kainuma (2017)
SSP3: AIM implementation of Shared Socioeconomic PathwaysGlobal Environmental Change-human and Policy Dimensions, 42
Ryoichi Komiyama, Y. Fujii (2021)
Large-scale integration of offshore wind into the Japanese power gridSustainability Science, 16
J. Rogelj, Oliver Fricko, M. Meinshausen, V. Krey, Johanna Zilliacus, K. Riahi (2017)
Understanding the origin of Paris Agreement emission uncertaintiesNature Communications, 8
D. Vuuren, Paul Lucas, Katherine Calvin, S. Chung, Mike Harfoot, S. Hedden, A. Köberle, Yoshihide Wada, L. Bouwman, Chen-Min He, Barry Hughes, F. Hurley, T. Keating, Jonathan Moyer, Marco Rieckmann, B. Rodríguez-Labajos (2019)
Global Environment Outlook – GEO-6: Healthy Planet, Healthy People
E. Hodson, Maxwell Brown, Stuart Cohen, Sharon Showalter, M. Wise, F. Wood, Justin Caron, F. Feijoo, G. Iyer, Kathryne Cleary (2018)
U.S. energy sector impacts of technology innovation, fuel price, and electric sector CO2 policy: Results from the EMF 32 model intercomparison studyEnergy Economics
E. Kriegler, J. Weyant, G. Blanford, V. Krey, L. Clarke, J. Edmonds, A. Fawcett, Gunnar Luderer, K. Riahi, R. Richels, S. Rose, M. Tavoni, D. Vuuren (2014)
The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategiesClimatic Change, 123
足立 幸男, 細野 助博, 飯尾 潤 (2015)
Policy Analysis in Japan
J. Bistline, E. Hodson, C. Rossmann, Jared Creason, B. Murray, Alexander Barron (2018)
Electric sector policy, technological change, and U.S. emissions reductions goals: Results from the EMF 32 model intercomparison project.Energy economics, 73
L. Clarke, A. Fawcett, J. Weyant, James McFarland, Vaibhav Chaturvedi, Yuyu Zhou (2014)
Technology and U.S. Emissions Reductions Goals: Results of the EMF 24 Modeling ExerciseThe Energy Journal, 35
(2020)
Inaugural speech of the prime minister at the 203rd session of the Diet (Dai nihyaku san kai niokeru suga naikaku sohri daijin shoshin hyomei enzetsu) (in Japanese)
Greg Richards, Marques Lénia, K. Mein, Lénia Marques (2022)
Summary for PolicymakersThe Ocean and Cryosphere in a Changing Climate
Kengo Suzuki, Takeshi Shibuya, Tetsuya Kanagawa (2021)
Effectiveness of a game-based class for interdisciplinary energy systems education in engineering coursesSustainability Science, 16
James McFarland, A. Fawcett, A. Morris, J. Reilly, P. Wilcoxen (2018)
OVERVIEW OF THE EMF 32 STUDY ON U.S. CARBON TAX SCENARIOS*Climate change economics, 9
Yiyi Ju, M. Sugiyama, Etsushi Kato, Yuhji Matsuo, K. Oshiro, Diego Herran (2021)
Industrial decarbonization under Japan’s national mitigation scenarios: a multi-model analysisSustainability Science, 16
Shiro Takeda, Toshi Arimura (2020)
A Computable General Equilibrium Analysis of Environmental Tax Reform in JapanERN: Computable General Equilibrium Models (Topic)
A. Grubler, C. Wilson, N. Bento, Benigna Boza-Kiss, V. Krey, D. McCollum, Narasimha Rao, K. Riahi, J. Rogelj, S. Stercke, Jonathan Cullen, S. Frank, Oliver Fricko, Fei Guo, M. Gidden, P. Havlík, D. Huppmann, G. Kiesewetter, P. Rafaj, W. Schoepp, H. Valin (2018)
A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologiesNature Energy, 3
Allison Dickey, R. Faller (2019)
of How to Approach
Yiyi Ju, M. Sugiyama, D. Herran, J. Wang, Akimitsu Inoue (2021)
An open-source tool for visualization of climate mitigation scenarios: MipplotEnviron. Model. Softw., 139
Oleg Lugovoy, Xiangzhao Feng, Ji Gao, Jifeng Li, Qiang Liu, F. Teng, L. Zou (2018)
Multi-model comparison of CO2 emissions peaking in China: Lessons from CEMF01 studyAdvances in Climate Change Research, 9
K. Calvin, L. Clarke, V. Krey, G. Blanford, K. Jiang, M. Kainuma, E. Kriegler, Gunnar Luderer, P. Shukla (2012)
The role of Asia in mitigating climate change: Results from the Asia modeling exerciseEnergy Economics, 34
A. Fawcett, James McFarland, A. Morris, J. Weyant (2018)
INTRODUCTION TO THE EMF 32 STUDY ON U.S. CARBON TAX SCENARIOS.Climate change economics, 9 1
A. Fawcett, L. Clarke, J. Weyant (2014)
Introduction to EMF 24The Energy Journal, 35
Shogo Sakamoto, Y. Nagai, M. Sugiyama, S. Fujimori, Etsushi Kato, Ryoichi Komiyama, Yuhji Matsuo, K. Oshiro, Diego Herran (2021)
Demand-side decarbonization and electrification: EMF 35 JMIP studySustainability Science, 16
Yuhji Matsuo, Ryoichi Komiyama (2021)
System LCOE of variable renewable energies: a case study of Japan’s decarbonized power sector in 2050Sustainability Science, 16
H. Waisman, C. Bataille, H. Winkler, F. Jotzo, P. Shukla, M. Colombier, Daniel Buira, P. Criqui, M. Fischedick, M. Kainuma, E. Rovere, S. Pye, G. Safonov, Ucok Siagian, F. Teng, M. Virdis, Jim Williams, Soogil Young, G. Anandarajah, R. Boer, Yongsung Cho, Amandine Denis-Ryan, S. Dhar, M. Gaeta, Cláudio Gesteira, Ben Haley, J. Hourcade, Qiang Liu, Oleg Lugovoy, T. Masui, S. Mathy, K. Oshiro, R. Parrado, M. Pathak, V. Potashnikov, S. Samadi, D. Sawyer, T. Spencer, J. Tovilla, Hilton Trollip (2019)
A pathway design framework for national low greenhouse gas emission development strategiesNature Climate Change, 9
(2015)
Pathways to deep decarbonization in Japan. Institute for Sustainable Development and International Relations (IDDRI) and Sustainable Development Solutions Network (SDSN
E. Kriegler, K. Riahi, N. Bauer, V. Schwanitz, Nils Petermann, V. Bosetti, A. Marcucci, S. Otto, Leonidas Paroussos, S. Rao-Skirbekk, T. Curras, Shuichi Ashina, J. Bollen, J. Eom, M. Hamdi-Chérif, T. Longden, A. Kitous, A. Méjean, F. Sano, M. Schaeffer, K. Wada, P. Capros, D. Vuuren, O. Edenhofer, C. Bertram, Ruben Bibas, J. Edmonds, N. Johnson, V. Krey, Gunnar Luderer, D. McCollum, K. Jiang (2015)
A short note on integrated assessment modeling approaches: Rejoinder to the review of "Making or breaking climate targets - The AMPERE study on staged accession scenarios for climate policy"
Etsushi Kato, A. Kurosawa (2021)
Role of negative emissions technologies (NETs) and innovative technologies in transition of Japan’s energy systems toward net-zero CO2 emissionsSustainability Science, 16
M. Lemos, J. Arnott, N. Ardoin, K. Baja, A. Bednarek, A. Dewulf, Clare Fieseler, K. Goodrich, K. Jagannathan, Nicole Klenk, K. Mach, A. Meadow, R. Meyer, R. Moss, L. Nichols, K. Sjostrom, M. Stults, E. Turnhout, C. Vaughan, G. Wong‐Parodi, C. Wyborn (2018)
To co-produce or not to co-produceNature Sustainability, 1
A. Fawcett, Leon Clarke, S. Rausch, J. Weyant (2014)
Overview of EMF 24 Policy ScenariosThe Energy Journal, 35
(2020)
The emissions gap report 2020. United Nations Environment Programme
K. Oshiro, T. Masui, M. Kainuma (2018)
Transformation of Japan's energy system to attain net-zero emission by 2050Carbon Management, 9
B. Knopf, Yen-Heng Chen, E. Cian, Hannah Förster, A. Kanudia, Ioanna Karkatsouli, I. Keppo, T. Koljonen, K. Schumacher, D. Vuuren (2013)
BEYOND 2020 — STRATEGIES AND COSTS FOR TRANSFORMING THE EUROPEAN ENERGY SYSTEMClimate Change Economics, 04
T. Masui, Ken’ichi Matsumoto, Y. Hijioka, T. Kinoshita, T. Nozawa, Sawako Ishiwatari, Etsushi Kato, P. Shukla, Y. Yamagata, M. Kainuma (2011)
An emission pathway for stabilization at 6 Wm−2 radiative forcingClimatic Change, 109
Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations
K. Oshiro, S. Fujimori (2020)
Stranded investment associated with rapid energy system changes under the mid-century strategy in JapanSustainability Science, 16
Sustainability Science (2021) 16:347–353 https://doi.org/10.1007/s11625-021-00931-0 SPECIAL FEATURE: EDITORIAL Energy Scenarios for Long-Term Climate Change Mitigation in Japan Introduction to the special feature on energy scenarios for long‑term climate change mitigation in Japan 1 2,3,4 5 6 Masahiro Sugiyama · Shinichiro Fujimori · Kenichi Wada · John Weyant Received: 31 January 2021 / Accepted: 14 February 2021 / Published online: 24 February 2021 © The Author(s), under exclusive licence to Springer Japan KK part of Springer Nature 2021 Introduction The prime minister emphasized in his speech that the transition would entail “transformation of the industrial On October 26, 2020, Prime Minister Suga pledged that structure and economy and society” (authors’ translation). Japan would be carbon-neutral by 2050 (Suga 2020). The This is not an understatement; the challenge of decarboniza- pledge upgraded Japan’s previous long-term strategy of tion is widely acknowledged, and decarbonization transition reducing emissions by 80% by 2050 to full decarboniza- requires a wide range of policies to accelerate technologi- tion. Against this background, the government issued the cal innovations and societal changes. It is, therefore, vital Green Growth Strategy in December 2020 (Government of to improve the science of energy transition to inform such Japan 2020), and is in the process of amending the Law Con- policies. cerning the
Sustainability Science – Springer Journals
Published: Feb 24, 2021
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.