Access the full text.
Sign up today, get DeepDyve free for 14 days.
[Large-Eddy Simulation (LES) and Discrete Particle Simulation (DPS) are used to highlight effects of fluid-particle and particle-particle interactions on dispersed-phase transport in fully-developed turbulent channel flow. A range of particle Stokes numbers in the simulations are considered that lead to strong changes in particle response. In the absence of inter-particle collisions, the calculations illustrate the characteristic build-up of particles in the near-wall region. While mean shear in the carrier and dispersed phase velocities is an important effect in wall-bounded flows, LES/DPS results show that the particle velocity fluctuations in the wall-normal direction are controlled primarily by the drag force and in equilibrium with the corresponding components of the fluid-particle velocity correlation. Inter-particle collisions provide a redistribution mechanism that reduces the strong anisotropy of the particle velocity fluctuations and substantially elevates cross-stream transport. Spatial properties of the particle velocity field are examined using two-point correlations. The correlation functions are discontinuous at the origin and are consistent with a partitioning of the particle velocity by inertia into a spatially-correlated contribution and random component that is not correlated in space. Perspectives and implications of these findings are also discussed.]
Published: Jan 1, 2006
Keywords: Particle Velocity; Stokes Number; Velocity Correlation; Subgrid Modeling; Disperse Phase Velocity
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.