IUTAM Symposium on Computational Approaches to Multiphase FlowAccumulation of Heavy Particles in Bounded Vortex Flow
IUTAM Symposium on Computational Approaches to Multiphase Flow: Accumulation of Heavy Particles...
Ijzermans, Rutger H. A.; Hagmeijer, R.
2006-01-01 00:00:00
[Much research has been done on the motion of heavy particles in simple vortex flows. In most of this work, particle motion is investigated under the influence of fixed vortices. In the context of astrophysics, the motion of heavy particles in rotating two-dimensional flows has been investigated; the rotation follows from the laws of Kepler. In the present paper, the motion of heavy particles in potential vortex flow in a circular domain is investigated. The vortex describes a circular trajectory due to the presence of the boundary, so that a steadily rotating flow is obtained. In order to isolate the effect of particle inertia, only Stokes drag is taken into account in the equation of motion. The numerical simulations are based on a oneway coupling. They show that small heavy particles accumulate in an ellitpic region of the flow, counterrotating with respect to the vortex. When the particle Stokes number exceeds a threshold, depending on the vortex configuration, particles are expelled from the circular domain. A stability criterion for this particle accumulation is derived analytically. These results are qualitatively comparable to those obtained by others in astrophysics.]
http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.pnghttp://www.deepdyve.com/lp/springer-journals/iutam-symposium-on-computational-approaches-to-multiphase-flow-uySkfhP98X
IUTAM Symposium on Computational Approaches to Multiphase FlowAccumulation of Heavy Particles in Bounded Vortex Flow
[Much research has been done on the motion of heavy particles in simple vortex flows. In most of this work, particle motion is investigated under the influence of fixed vortices. In the context of astrophysics, the motion of heavy particles in rotating two-dimensional flows has been investigated; the rotation follows from the laws of Kepler. In the present paper, the motion of heavy particles in potential vortex flow in a circular domain is investigated. The vortex describes a circular trajectory due to the presence of the boundary, so that a steadily rotating flow is obtained. In order to isolate the effect of particle inertia, only Stokes drag is taken into account in the equation of motion. The numerical simulations are based on a oneway coupling. They show that small heavy particles accumulate in an ellitpic region of the flow, counterrotating with respect to the vortex. When the particle Stokes number exceeds a threshold, depending on the vortex configuration, particles are expelled from the circular domain. A stability criterion for this particle accumulation is derived analytically. These results are qualitatively comparable to those obtained by others in astrophysics.]
Published: Jan 1, 2006
Keywords: Stream Function; Stagnation Point; Heavy Particle; Point Vortex; Stokes Number
Recommended Articles
Loading...
There are no references for this article.
Share the Full Text of this Article with up to 5 Colleagues for FREE
Sign up for your 14-Day Free Trial Now!
Read and print from thousands of top scholarly journals.
To get new article updates from a journal on your personalized homepage, please log in first, or sign up for a DeepDyve account if you don’t already have one.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.