Access the full text.
Sign up today, get DeepDyve free for 14 days.
[Local topological and statistical measures of enstrophy and strain-rate structures are compared with global statistics to determine the effects of mean shear on the interactions between fluctuating vorticity and strain rate in DNS of transitioning isotropic to shear turbulence. “Structures” are extracted as concentrations of turbulence fluctuations, allowing quantitative with visual analysis. We find that mean shear adjusts the alignment of fluctuating vorticity and strain rate so as to (1) enhance global and local alignments between vorticity and the second eigenvector of fluctuating strain rate, (2) two-dimensionalize fluctuating strain rate, and (3) align the compressional components of fluctuating and mean strain rate. Shear causes amalgamation of structures and suppresses strain-rate structures between enstrophy structures. Shear enhances “passive” strain-rate fluctuations—strain rate kinematically induced by local vorticity concentrations with negligible enstrophy production—relative to “active,” or vorticity-generating, strain-rate fluctuations. Enstrophy structures separate into “active” and “passive” based on the second eigenvalue of fluctuating strain rate. The time evolution of a shearinduced hairpin enstrophy structure was analyzed. The structure originated in the initial isotropic state as a vortex sheet, evolved into a vortex tube during a transitional period, and developed into a well-defined horseshoe vortex in the shear-dominated state.]
Published: Jan 1, 2006
Keywords: Vortical Structure; Vortex Tube; Vortex Sheet; Horseshoe Vortex; Homogeneous Turbulence
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.