Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pmb {\mathscr {L}}$$\end{document}-invariants of Artin motives

L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym}... R\'esum\'eWe compute Benois L\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathscr {L}}$$\end{document}-invariants of weight 1 cuspforms and of their adjoint representations and show how this extends Gross’ p-adic regulator to Artin motives which are not critical in the sense of Deligne. Benois’ construction depends on the choice of a regular submodule which is well understood when the representation is p-regular, as it then amounts to the choice of a “motivic” p-refinement. The situation is dramatically different in the p-irregular case, where the regular submodules are parametrized by a flag variety and thus depend on continuous parameters. We are nevertheless able to show in some examples, how Hida theory and the geometry of the eigencurve can be used to detect a finite number of choices of arithmetic and “mixed-motivic” significance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annales mathématiques du Québec Springer Journals

L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pmb {\mathscr {L}}$$\end{document}-invariants of Artin motives

Loading next page...
 
/lp/springer-journals/l-documentclass-12pt-minimal-usepackage-amsmath-usepackage-wasysym-ZctxyzF7mk

References (20)

Publisher
Springer Journals
Copyright
Copyright © Fondation Carl-Herz and Springer Nature Switzerland AG 2022
ISSN
2195-4755
eISSN
2195-4763
DOI
10.1007/s40316-022-00201-0
Publisher site
See Article on Publisher Site

Abstract

R\'esum\'eWe compute Benois L\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathscr {L}}$$\end{document}-invariants of weight 1 cuspforms and of their adjoint representations and show how this extends Gross’ p-adic regulator to Artin motives which are not critical in the sense of Deligne. Benois’ construction depends on the choice of a regular submodule which is well understood when the representation is p-regular, as it then amounts to the choice of a “motivic” p-refinement. The situation is dramatically different in the p-irregular case, where the regular submodules are parametrized by a flag variety and thus depend on continuous parameters. We are nevertheless able to show in some examples, how Hida theory and the geometry of the eigencurve can be used to detect a finite number of choices of arithmetic and “mixed-motivic” significance.

Journal

Annales mathématiques du QuébecSpringer Journals

Published: Apr 1, 2023

Keywords: L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {L}}$$\end{document}-invariants; p-adic L-functions; Galois representations; Weight one modular forms; 11R23; 11F80; 11F33

There are no references for this article.