Access the full text.
Sign up today, get DeepDyve free for 14 days.
H. Darmon, Alan Lauder, V. Rotger (2016)
Gross–Stark units and p-adic iterated integrals attached to modular forms of weight oneAnnales mathématiques du Québec, 40
Adel Betina, Mladen Dimitrov (2019)
Geometry of the eigencurve at CM points and trivial zeros of Katz p-adic L-functionsarXiv: Number Theory
F Calegari, B Mazur (2009)
Nearly ordinary Galois deformations over arbitrary number fieldsJ. Inst. Math. Jussieu, 8
Adel Betina, Mladen Dimitrov (2020)
A geometric view on Iwasawa theoryJournal de Théorie des Nombres de Bordeaux
Laurent Herr (1998)
Sur la cohomologie galoisienne des corps $p$-adiquesBulletin de la Société Mathématique de France, 126
D. Benois (2011)
A generalization of Greenberg's L-invariantAmerican Journal of Mathematics, 133
O Rivero, V Rotger (2021)
Derived Beilinson-Flach elements and the arithmetic of the adjoint of a modular formJ. Eur. Math. Soc. (JEMS), 23
H. Hida (1988)
A $p$-adic measure attached to the zeta functions associated with two elliptic modular forms. IIAnnales de l'Institut Fourier, 38
A Brumer (1967)
On the units of algebraic number fieldsMathematika, 14
Masataka Chida, Ming-Lun Hsieh (2022)
The derivative formula of p-adic L-functions for imaginary quadratic fields at trivial zerosAnnales mathématiques du Québec, 47
Kazim Buyukboduk, Ryotaro Sakamoto (2019)
On the non-critical exceptional zeros of Katz p-adic L-functions for CM fieldsAdvances in Mathematics
S. Dasgupta (2016)
Factorization of p-adic Rankin L-seriesInventiones mathematicae, 205
W Bley (2006)
Equivariant Tamagawa number conjecture for abelian extensions of a quadratic imaginary fieldDoc. Math., 11
J. Bellaiche, Mladen Dimitrov (2013)
On the eigencurve at classical weight $1$ pointsDuke Mathematical Journal, 165
P. Fontaine (1982)
Sur certains types de representations p-adiques du groupe de Galois d'un corps local; construction d'un anneau de Barsotti-TateAnnals of Mathematics, 115
J. Bellaïche (2021)
The EigenbookPathways in Mathematics
C-G Schmidt (1988)
p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-adic measures attached to automorphic representations of GL(3)Invent. Math., 92
R Greenberg (1973)
On a certainl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l$$\end{document}-adic representationInvent. Math., 21
B Perrin-Riou (1995)
FonctionsL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L$$\end{document}p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-adiques des représentationsp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-adiquesAstérisque, 229
P Deligne, KA Ribet (1980)
Values of abelianL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L$$\end{document}-functions at negative integers over totally real fieldsInvent. Math., 59
R\'esum\'eWe compute Benois L\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathscr {L}}$$\end{document}-invariants of weight 1 cuspforms and of their adjoint representations and show how this extends Gross’ p-adic regulator to Artin motives which are not critical in the sense of Deligne. Benois’ construction depends on the choice of a regular submodule which is well understood when the representation is p-regular, as it then amounts to the choice of a “motivic” p-refinement. The situation is dramatically different in the p-irregular case, where the regular submodules are parametrized by a flag variety and thus depend on continuous parameters. We are nevertheless able to show in some examples, how Hida theory and the geometry of the eigencurve can be used to detect a finite number of choices of arithmetic and “mixed-motivic” significance.
Annales mathématiques du Québec – Springer Journals
Published: Apr 1, 2023
Keywords: L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {L}}$$\end{document}-invariants; p-adic L-functions; Galois representations; Weight one modular forms; 11R23; 11F80; 11F33
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.