Access the full text.
Sign up today, get DeepDyve free for 14 days.
This paper investigates the nonlinear boundary value problem resulting from the exact reduction of the Navier-Stokes equations for unsteady magnetohydrodynamic boundary layer flow over the stretching/shrinking permeable sheet submerged in a moving fluid. To solve this equation, a numerical method is proposed based on a Laguerre functions with reproducing kernel Hilbert space method. Using the operational matrices of derivative, we reduced the problem to a set of algebraic equations. We also compare this work with some other numerical results and present a solution that proves to be highly accurate.
Applied Mathematics-A Journal of Chinese Universities – Springer Journals
Published: Sep 1, 2021
Keywords: nonlinear boundary value problem; Laguerre reproducing kernel method; operational matrix of derivative; existence and nonexistence of solutions; approximate solution; 34B15; 76D03; 65M70
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.