Large-Scale Networks in Engineering and Life SciencesA Petri-Net-Based Framework for Biomodel Engineering
Large-Scale Networks in Engineering and Life Sciences: A Petri-Net-Based Framework for Biomodel...
Blätke, Mary Ann; Rohr, Christian; Heiner, Monika; Marwan, Wolfgang
2014-07-30 00:00:00
[Petri nets provide a unifying and versatile framework for the synthesis and engineering of computational models of biochemical reaction networks and of gene regulatory networks. Starting with the basic definitions, we provide an introduction into the different classes of Petri nets that reinterpret a Petri net graph as a qualitative, stochastic, continuous, or hybrid model. Static and dynamic analysis in addition to simulative model checking provide a rich choice of methods for the analysis of the structure and dynamic behavior of Petri net models. Coloring of Petri nets of all classes is powerful for multiscale modeling and for the representation of location and space in reaction networks since it combines the concept of Petri nets with the computational mightiness of a programming language. In the context of the Petri net framework, we provide two most recently developed approaches to biomodel engineering, the database-assisted automatic composition and modification of Petri nets with the help of reusable, metadata-containing modules, and the automatic reconstruction of networks based on time series data sets. With all these features the framework provides multiple options for biomodel engineering in the context of systems and synthetic biology.]
http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.pnghttp://www.deepdyve.com/lp/springer-journals/large-scale-networks-in-engineering-and-life-sciences-a-petri-net-i1j0DjLDmo
Large-Scale Networks in Engineering and Life SciencesA Petri-Net-Based Framework for Biomodel Engineering
[Petri nets provide a unifying and versatile framework for the synthesis and engineering of computational models of biochemical reaction networks and of gene regulatory networks. Starting with the basic definitions, we provide an introduction into the different classes of Petri nets that reinterpret a Petri net graph as a qualitative, stochastic, continuous, or hybrid model. Static and dynamic analysis in addition to simulative model checking provide a rich choice of methods for the analysis of the structure and dynamic behavior of Petri net models. Coloring of Petri nets of all classes is powerful for multiscale modeling and for the representation of location and space in reaction networks since it combines the concept of Petri nets with the computational mightiness of a programming language. In the context of the Petri net framework, we provide two most recently developed approaches to biomodel engineering, the database-assisted automatic composition and modification of Petri nets with the help of reusable, metadata-containing modules, and the automatic reconstruction of networks based on time series data sets. With all these features the framework provides multiple options for biomodel engineering in the context of systems and synthetic biology.]
Published: Jul 30, 2014
Keywords: Automatic network reconstruction; Biomodel engineering; Dynamic systems modelling; Modular modelling; Petri nets; Molecular regulatory networks; Reverse engineering
Recommended Articles
Loading...
There are no references for this article.
Share the Full Text of this Article with up to 5 Colleagues for FREE
Sign up for your 14-Day Free Trial Now!
Read and print from thousands of top scholarly journals.
To get new article updates from a journal on your personalized homepage, please log in first, or sign up for a DeepDyve account if you don’t already have one.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.