Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Learning controlled and targeted communication with the centralized critic for the multi-agent system

Learning controlled and targeted communication with the centralized critic for the multi-agent... Multi-agent deep reinforcement learning (MDRL) has attracted attention for solving complex tasks. Two main challenges of MDRL are non-stationarity and partial observability from the perspective of agents, impacting the performance of agents’ learning cooperative policies. In this study, Controlled and Targeted Communication with the Centralized Critic (COTAC) is proposed, thereby constructing the paradigm of centralized learning and decentralized execution with partial communication. It is capable of decoupling how the MAS obtains environmental information during training and execution. Specifically, COTAC can make the environment faced by agents to be stationarity in the training phase and learn partial communication to overcome the limitation of partial observability in the execution phase. Based on this, decentralized actors learn controlled and targeted communication and policies optimized by centralized critics during training. As a result, agents comprehensively learn when to communicate during the sending and how to target information aggregation during the receiving. Apart from that, COTAC is evaluated on two multi-agent scenarios with continuous space. Experimental results demonstrated that partial agents with important information choose to send messages and targeted aggregate received information by identifying the relevant important information, which can still have better cooperation performance while reducing the communication traffic of the system. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Intelligence Springer Journals

Learning controlled and targeted communication with the centralized critic for the multi-agent system

Loading next page...
 
/lp/springer-journals/learning-controlled-and-targeted-communication-with-the-centralized-jxx67KT8p0

References (39)

Publisher
Springer Journals
Copyright
Copyright © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
ISSN
0924-669X
eISSN
1573-7497
DOI
10.1007/s10489-022-04225-5
Publisher site
See Article on Publisher Site

Abstract

Multi-agent deep reinforcement learning (MDRL) has attracted attention for solving complex tasks. Two main challenges of MDRL are non-stationarity and partial observability from the perspective of agents, impacting the performance of agents’ learning cooperative policies. In this study, Controlled and Targeted Communication with the Centralized Critic (COTAC) is proposed, thereby constructing the paradigm of centralized learning and decentralized execution with partial communication. It is capable of decoupling how the MAS obtains environmental information during training and execution. Specifically, COTAC can make the environment faced by agents to be stationarity in the training phase and learn partial communication to overcome the limitation of partial observability in the execution phase. Based on this, decentralized actors learn controlled and targeted communication and policies optimized by centralized critics during training. As a result, agents comprehensively learn when to communicate during the sending and how to target information aggregation during the receiving. Apart from that, COTAC is evaluated on two multi-agent scenarios with continuous space. Experimental results demonstrated that partial agents with important information choose to send messages and targeted aggregate received information by identifying the relevant important information, which can still have better cooperation performance while reducing the communication traffic of the system.

Journal

Applied IntelligenceSpringer Journals

Published: Jun 1, 2023

Keywords: Reinforcement learning; Centralized critic; Communication; Cooperation; Multi-agent system

There are no references for this article.