Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Local varieties of cassava: conservation, cultivation and use in Uganda

Local varieties of cassava: conservation, cultivation and use in Uganda Environ Dev Sustain (2018) 20:2427–2445 https://doi.org/10.1007/s10668-017-9997-6 Local varieties of cassava: conservation, cultivation and use in Uganda 1,3 1 2 • • Grace Nakabonge C. Samukoya Y. Baguma Received: 8 April 2017 / Accepted: 21 June 2017 / Published online: 28 June 2017 The Author(s) 2017. This article is an open access publication Abstract The study explored the theory that on-farm conservation of cassava germplasm is influenced by farmers’ traditional and cultural preferences of particular varieties. Tra- ditional knowledge practices that are used for on-farm conservation of cassava germplasm as well as cassava attributes for selection were assessed. The findings obtained from the study indicated that farmers use traditional knowledge to select and preserve cassava germplasm for future use. It was also clear that farmers have their preferences such as culinary attributes, storability in the ground, early maturity and cooking quality to mention but a few that influence the decisions taken to retain or abandon cultivation of varieties. Therefore, by planting varieties in multiples plots, replanting immediately after harvesting, sharing with others in the community and planting disease-free materials, farmers ensure that they preserve varieties of interest for decades. The information generated during this study could inform development policies tailored toward ensuring sustainable on-farm conservation of cassava genetic resources. Keywords On farm  Socio-cultural  Germplasm  Traditional farmer knowledge 1 Introduction Crop genetic resources are important in ensuring food security since they provide the raw materials needed for crop improvement (FAO 2010). Farmers over the years have culti- vated a variety of crops on their farms that are adapted to particular needs and conditions & Grace Nakabonge gnakabonge@gmail.com National Crops Resources Research Institute (NaCRRI), P. O. Box 7084, Kampala, Uganda National Agricultural Research Organization (NARO), P.O. Box 295, Entebbe, Uganda College of Agriculture and Environmental Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda 123 2428 G. Nakabonge et al. (Tripp 1996). It is from the human selection practices that crop genetic resources have been preserved for many decades (Gwali et al. 2011). However, the introduction of improved varieties originating from crop improvement programs to combat emergence of diseases and pests as well as other environmental stresses are subjecting several crops genetic resources to genetic erosion (Peroni and Hanazaki 2002; Legg and Fauquet 2004; Alicai et al. 2007). It is important to support conservation of crop genetic resources by fully understanding the traditional knowledge and practices that influence their selection maintenance and conservation (Negi 2010; Parajuli and Das 2013; Wilder et al. 2016). It is important to be mindful of the notion that farmers may not preserve varieties for the sake of conservation but rather because they are adapted to particular needs and conditions that may change at any given time (Tripp 1996). Traditional farmer knowledge is not only important for its socio-cultural value but also for a number of reasons most of which are relevant to the conservation of crop biodiversity. While it has been the responsibility of genetic resource and research centers to recover germplasm before it is lost and to ensure its introduction into germplasm banks (FAO 2010), it is important that the role of local farmers in genetic resource conservation is recognized since they aid in ensuring food and agricultural diversity, valuable landscape, livelihoods and food security. Nevertheless, traditional livelihoods and indigenous plant varieties are increasingly endangered by large- scale commercialization of agriculture, population dynamics, land-use/cover changes and the impacts of climate change (FAO 2009). Cassava (Manihot esculenta Crantz) is one of the crops that have been conserved by farmers for decades, and it is thought to have been cultivated from 3000 to 7000 years ago in South America (Ng and Ng 2002). Cassava is an annual root crop that is widely thought to have originated from the Amazon basin (Nassar 2000). The crop was later introduced to West Africa from which it spread to other African nations (Hillocks 2002; Okogbenin et al. 2007). In Uganda Cassava was introduced between 1862 and 1875 by the Asian traders and spread to almost all parts of the country (Langlands 1972). Its spread and cultivation was due to its adaptability to a variety of agro-ecological conditions and its tolerance to drought (Nassar and Ortiz 2006; OECD 2014). Cassava is therefore regarded as a food security crop in Uganda and Africa as a whole (Balyejusa Kizito 2006). Currently, Cassava is grown in many parts of Uganda as one of the major food crops and is globally gaining economic importance for its starch utilization in food, feed and industry (Legg 1999; Jansson et al. 2009; Nuwamanya et al. 2009; Turyagyenda et al. 2012). The duration of cassava cultivation in Uganda implies that it has evolved over time and has undergone both environmental and human selection on farmers’ fields. Cassava is consequently thought to be harboring important genes that will be of use in the future improvement of the crop (Turyagyenda et al. 2012). However, its genetic diversity is threatened by diseases most notably cassava mosaic and cassava brown streak diseases that have resulted into reduced productivity and loss of germplasm (Legg and Fauquet 2004; Alicai et al. 2007; Kawuki et al. 2016). The current global focus of breeding cassava varieties for industrial purposes will further threaten the cassava genetic resources as farmers will focus on growing cassava for commercial purposes (Jansson et al. 2009). For instance, in Teso region, the farmers are mainly growing NaSe , the improved variety from cassava breeding program. It is difficult to find landraces like Ebwanatereka and Jaribu which were once common (Mr. Okaasai Opolot. personal communication February 10 2014). The loss of cassava genetic resources might com- promise future breeding of the crop thus the need for support toward its ex situ and in situ conservation. 123 Local varieties of cassava: conservation, cultivation and… 2429 Previous studies on management and differentiation of local varieties by farmers in Uganda revealed that there could be variation in on-farm selection and cultivation of varieties influenced by cultural views (Balyejusa Kizito et al. 2006). For instance, some cultures do not cultivate bitter varieties because they do not consider them as food, whereas other cultures mostly in mid-northern Uganda and northwestern cultivate mostly bitter varieties that are considered to be tastier after processing than sweet varieties (Balyejusa Kizito et al. 2006, 2007). Bitterness is also a security measure as thieves cannot readily use/sell them. Therefore, farmers have perceptions about local varieties that need to be fully understood and integrated into future on-farm conservation policy that is accept- able and legitimate to the local communities. Understanding the socio-cultural factors that influence farmer decision making during the selection and retention of cassava varietal diversity is crucial for future improvement of the crop. The current study was aimed at assessing the farmer knowledge and practices that influence decision making in selection and retention of cassava local varieties in 6 agro-ecological zones of Uganda. The objectives were to document farmer varieties based on farmers’ knowledge, to determine the farmers’ preferences for cultivation, utilization and selection, and to assess conserva- tion practices undertaken by farmers on the cassava varieties. Undertaking a study that will generate knowledge on conservation of food security crop like cassava is useful in the quest for attaining sustainable development goal 2 which focuses on ending hunger and all sorts of malnutrition by 2030. Furthermore, the study responds to agenda 21 of the earth summit that calls for programs and policies for strengthening biodiversity conservation for sustainable economic development and environmental protection. 2 Methods 2.1 Study area The study was conducted in Uganda which is located in East Africa and lies astride the 0 0 0 0 Equator, between latitudes 412 N and 129 S and longitudes 2934 W and 350 E. Temperatures are in the range of 15–30 C. The country can be suitably divided into seven broad agro-ecological zones which have similar economic and social backgrounds, and in which ecological conditions (soil types, topography, rainfall), farming systems and practices are fairly homogeneous (UBOS 2010). Six agro-ecological zones southwest, mid- west, mid-north, eastern, central and northwestern Uganda were surveyed. In eastern agro- ecological zone, districts of Kaberamaido, Soroti, Amuria, Serere, Mbale, Manafwa, Busia and Iganga were surveyed. Southwestern districts of Rukungiri, Bushenyi, Buhinga and Ntungamo were surveyed. Mid-western districts surveyed include Kasese, Hoima, Kibaale, Kabalore, Buliisa, Kiryandongo, Kyenjojo, Kyegegwa and Kiryandongo. In northwestern Uganda, districts of Koboko, Nebbi, Arua were surveyed, whereas in central agro-eco- logical zone, districts of Kalangala, Butambala. Masaka, Kayunga, Luwero, Mukono, Rakai, Nakaseke, Bukomansimbi and Kalungu were surveyed. Mid-northern districts of Gulu, Lira and Apac were surveyed. The study focused on collecting cassava local vari- eties and the associated traditional knowledge for in vitro conservation. In this paper, a ‘‘local variety’’ is a cassava landrace identified by farmers under a single ethnic name which had been grown in the area for at least 20 years. The data collection was conducted between 2013 and 2016. 123 2430 G. Nakabonge et al. 2.2 Sampling strategy Districts from each of the 6 agro-ecological zones (Fig. 1) were selected purposively based on their track record in cassava growing. Sub-counties and households were purposively sampled using snowball method where prior information was obtained from extension workers at the districts that they possess cassava local varieties in their gardens. From each district, 4 sub-counties were further sampled. Households within sub-counties were sam- pled based on information from key informants or from the previous household about the presence of cassava local varieties. A total of 384 respondents were interviewed using a questionnaire across all the selected regions. Variables investigated included farmer preferences for cassava cultivation, utilization and cassava conservation practices as well as cassava local varieties cultivated by farmers. Varieties were recorded as named by farmers in their native languages of the different ethnic groups in the different sites selected. 2.3 Data analysis Data were coded in Microsoft Excel and analyzed using the Statistical Package for Social Scientists (SPSS) version 24.0 (2016 release, _IBM Corp., Chicago, IL, USA) using descriptive statistics. Multiple response data for conservation practices and production of cassava local varieties were grouped together using the multiple response command of SPSS. The descriptive words provided for each use were categorized and counted through the multiple responses. Data were presented as frequencies in the households sampled, percentages and cross-tabs. Cassava local varieties were also listed using the ethnic names provided by farmers (Fig. 2). Key 1 WestNile 2 Northern 3 Eastern 4 Midwestern 5 Central 6 Western Fig. 1 Location of the 6 agro-ecological zones of Uganda where the study was conducted 123 Local varieties of cassava: conservation, cultivation and… 2431 35% Years of growing cassava by region 30% 25% 20% 20% 14% 15% 11% 10% 10% 7% 6% 5% 4% 3% 3% 5% 2% 2% 2% 2% 2% 2% 1% 0% 0% Central Eastern Mid-Western Northern West Nile Western Years of growing cassava by resgion <5 years 5-19 years 20-49 years 50+ Fig. 2 Duration of cassava cultivation in the study areas categorized into\5, 5–19, 20–49 and 50 years 3 Results 3.1 Duration of cassava cultivation The information generated during this study was obtained from farmers who had been cultivating cassava for a period of not less than 5–50 years and more. Mid-western Uganda and central Uganda recorded the longest period of cassava cultivation in the study area with central Uganda having the highest number of farmers who reported having been growing cassava for the last 50 years and more. The mean age for respondents was 47 male and 46 female. 3.2 Production dynamics of cassava local varieties 3.2.1 Acreage under cassava cultivation In the current study, 60% of all households interviewed grow cassava on land between 1 and 4.9 acres followed by 32.7% that grow cassava on\1 acre, 4.9% on 5–9.9 acres and 1.8% on 10 or more acres. In mid-western, central, eastern, northwest and mid-north Uganda, majority of farmers grow cassava on 1–4.9 acres, at 19.7, 16.1, 7.5, 11.4 and 3.4%, respectively (Table 1). 3.2.1.1 Number of varieties cultivated by farmers The current study indicated that farmers grow up to a maximum of 14 varieties on their farms. However, most farmers grow between 1 and 4 local varieties (Table 2). The highest number of varieties grown on farm was reported from northwestern and mid-western Uganda. 3.3 Local varieties of cassava in the different agro-ecological zones of Uganda A total of 217 local varieties were reported by farmers and stakes collected for conser- vation at the National crops resources research institute (NaCRRI), Namulonge, Uganda. Of these, 49 were collected from northwest, 89 from mid-west, 33 from central, 11 from Percentage (%) 2432 G. Nakabonge et al. Table 1 Acreage of cassava cultivation in central, eastern, mid-west, mid-north, northwest and west Uganda Region \1 acre (%) 1–4.9 (%) 5–9.9 (%) 10? (%) Total (%) Area of land under cassava by region Central 5.5 16.1 21.6 Eastern 2.6 7.5 0.5 0.3 10.9 Mid-west 15.3 19.7 2.9 1.6 39.5 Mid-north 0.8 3.4 4.2 Northwest 5.2 11.4 1.6 18.2 Southwest 3.4 2.3 5.7 Total 32.7 60.5 4.9 1.8 100.0 Table 2 Number of cassava varieties cultivated per household in the six regions based on farmer responses Region Number of varieties Total 1 (%) 2 (%) 3 (%) 4 (%) 5 (%) 6 (%) 7 (%) 8 (%) 14 (%) Central 11.2 4.4 2.1 2.1 0.0 0.0 1.8 0.0 0.0 21.6 Eastern 3.1 4.5 1.6 0.5 0.3 1.3 0.0 0.0 0.0 11.3 Mid-west 6.8 5.2 10.2 6.5 5.2 1.6 2.9 1.3 0.0 39.6 Mid-north 1.8 1.6 0.8 0.0 0.0 0.0 0.0 0.0 0.0 4.2 Northwest 0.8 1.8 1.6 3.9 4.2 1.3 1.0 0.0 3.6 18.2 West 3.9 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.5 Total 27.6 18.8 16.1 13.0 9.6 4.2 5.7 1.3 3.6 100.0 mid-north, 15 from southwest and 20 from eastern Uganda. Nyaraboke, Karangwa, Kabiriti and Kirimumpale were the common varieties from mid-western, whereas Gbasumenge, Abiriya, Mingoro and Sanje were common in northwest. Njule and Kwatamumpale were common in central Uganda. Magana and Ofumbachai were the common varieties in eastern, whereas Bao, Ogwok and Icilcil were common in mid-northern Uganda. Bukalasa was common across all agro-ecological zones surveyed (Table 1). Generally varieties were named based on place of origin (northwest 9, mid-west 14, central 8, southwest 1, mid- north 1), maturity period (northwest 3, mid-west 3, central 1, mid-north 1), taste (northwest 3, mid-west 8, central 3, southwest 2, eastern 2), morphology (northwest 4, mid-west 9, central 3, southwest 3, mid-north 3), ease to cook (northwest 1, mid-west 5, eastern 3), yield (northwest 1, mid-west 6, central 1, southwest 2, eastern 1), disease susceptibility and tolerance (mid-west 2) marketability (central 2, eastern 1), resilience (southwest 1). However, for some varieties farmers did not know the meaning of the names given (Table 3). 3.4 Utilization of cassava local varieties Primary purpose of cassava local varieties in study areas was home consumption and sale (76.2%). 23.3% responded that cassava local varieties are cultivated mainly for home consumption and 1.3% grow local varieties for sale only (Table 4). 123 Local varieties of cassava: conservation, cultivation and… 2433 Table 3 Cassava varieties collected as named by farmers in the 6 agro-ecological zones Area of Northwest origin/source Variety Language Meaning Frequency (a) Categorization attribute Nyarukecha Alur From Okecha (name of person who 3 introduced variety to the area) Drua Lugbara Many tubers 3 Mingoro Lugbara Originated from Congo through the 7 Mingoro Clan Nyamatya Alur Introduced to community by Matya 2 Ochok-Ola Lugbara Mainly grown by Ochok tribe 3 Abdu Introduced to community by Abdu 3 Bukalasa From a place called Bukalasa 3 Ariwara Unknown from From a place called Ariwara in Congo 4 DRC Aliba Lugbara Gbanda meaning cassava; Aliba refers to 2 gbanda name of person who introduced variety Maturity period Abiria Lugbara One that saves you from Hunger 7 (because its early maturing) Godiri Lugbara Hard as tire (the variety is as hard as a 3 tire and takes long to cook) Nyaruchanda Alur Something that wastes time (because 1 variety takes long to mature) Taste Kali Swahiri Bitter 3 Mabulu Madi Came to stay 3 Sanje Lugbara You will see the benefits after planting 6 (because its early maturing) Morphology Palawu Lugbara One that produces many leaves 6 Alia Kakwa Elongated but tasty 2 Ogangara Alur Variety grows many branches 1 Derea Lugbara Short (variety grows short stems/ 1 branches) Ocol Alur Dark (cassava has dark stems) Ease to cook Aluthumoni Kakwa In-law wait (in-law was told to wait for 3 food as it cooks fast) Yield Gilagila Kakwa Help (variety needs a lot of management 1 to yield) Unknown Angaruba Alur 1 attribute Gbasumenge Lugbara 13 Aliba Lugbara 2 gbanda Nyapamitu Alur 4 123 2434 G. Nakabonge et al. Table 3 continued Area of Northwest origin/source Variety Language Meaning Frequency Amua Alur 2 Nyoeroli Alur 2 Joyo Madi moyo 2 Nyarudota Alur 2 Omoo Lugbara 2 Nyamuto Alur 2 Nyamukere Alur 2 Akulu Kakwa 2 Malokwa Lugbara 2 Sombili Not known 1 Thurungule Not known 1 Central Variety name Language Meaning Frequency (b) Categorization attribute Area of origin/source Bukalasa Luganda From a place called Bukalasa 7 Kitobo Luganda Name of place where variety was 2 obtained Naggalabi Luganda Name of place where variety was 1 obtained Butenga Luganda Name of place where variety was 1 obtained Kimaka Luganda Name of place where variety was 1 obtained Nakanaabo Luganda Name of person who introduced 1 variety to the area Nakyanzi Luganda – 3 Lusula – – 3 Morphology Kalitunsi Luganda Eucalyptus (as tall as eucalyptus 4 tree) Njule Luganda Opening (identified by the way 5 leaves open/spread out) Dduka-obusolo Luganda Keep away from rodents (tubers 2 enlarge a distance from stem, thus confuse animals that burrow around the stem looking for tubers to eat) Marketability Kwatamumpale Luganda Pocket (everybody who sees it gets 8 money to buy) Marketable as well Kabwa Luganda Dog (meaning that variety can 2 protect household from hunger in the same manner as dogs protect from enemies 123 Local varieties of cassava: conservation, cultivation and… 2435 Table 3 continued Central Variety name Language Meaning Frequency Yield Mpologoma Luganda Lion (cassava has large tubers) 3 Taste Kitampunu Runyankore Kills pigs (very bitter) 3 Kawogo Luganda Precious cassava variety (very tasty) 2 Matooke Luganda Banana (as soft as bananas) 4 Unknown attribute Machunde 1 Kalimanzira 1 Nakasugga 1 Mid-north Language Meaning Frequency Area of origin/source Ogwok Langi Introduced to place by Ogwok (name 4 of person who introduced variety to the area) Morphology Icilcil Langi Beautiful (because it has beautiful 3 leaves) Bao Langi Strong as timber (stems strong and 5 tall) Maturity period Okonyoladak Acholi Konyo (help). Ladak (transferred to a 2 new place). Best for new inhabitants because it matures early Southwest Language Meaning Frequency Area of origin/source Bukalasa Luganda From a place called Bukalasa 7 Morphology Kiteteyi Runyankole Canopy grows spreading out like a 1 dress Bitamisi Runyankole No threads in tubers 2 Nyakapimpiri Runyankole The shortest one (variety grows very 1 short) Taste Rutuga Runyankole Strangling (can kill instantly if eaten 2 fresh) Busukali Runyankole Sugar (it is as tasty as sugar) 1 Resilience Kyebandira Runyankole To find your own way (it could grow 2 anywhere planted Yields Kitengye Runyankole Piece of cloth (high yielding can be 1 sold to buy clothes) Mpologoma Luganda Lion (variety grows large tubers) 1 Eastern Language Meaning Frequency Ease to cook Ofumbachai Luganda Boiling tea (cooks very fast) 4 Ongada not known Not known 3 Magana Lugishu Not known 5 Marketability Mercury It is as highly marketable as mercury 2 Ekwataula Ateso Tail of a cow (marketable can earn 1 money to buy a cow) 123 2436 G. Nakabonge et al. Table 3 continued Eastern Language Meaning Frequency Taste Jaribu Kumam and Give it a try (taste then will know 3 swahili how tasty it is) Kwinini Ateso As bitter as quinine medicine 2 Yields Emanyai Ateso Marriage (because its high yielding 4 can feed enough people during a wedding Maturity period Omotoka Ateso Motor car. (quick like a car because 4 it matures early) Mid-west Variety Language Meaning Frequency c) Categorization attribute Area of origin/ Kirimumpale Runyoro It is in the trouser (no idea about origin 3 source of meaning) Nyarale Alur Brought by Rale (name of person who 3 introduced variety to the area) Bukalasa Luganda From a place called Bukalasa 10 Timtim Luo Was introduced by Atim (name of 11 person who introduced variety to the area) Kazimwenge Swahiri Grown for brewing 3 Nyaraboke Was first cultivated in a place called 21 Laboke in Kiryandongo by Alur Nyaru-ucha Alur Obtained from Mr Ucha (name of 3 person who introduced variety to the area) Nyaruzele Alur Introduced to community by Ozele 3 (name of person who introduced variety to the area) Nyaeva Rugungu Brought to area by Eva (name of 4 person who introduced variety to the area) Nyakakwa Lugungu Obtained from Kakwa people 4 Rwakakaikuru Runyoro Old (been cultivated in the area for a 1 very long time) Kalerenze Runyoro First cultivated by Kalerenze (name of 1 person who introduced variety to the area) Nyakabibi Rukonjo Introduced by Kabibi (name of person 1 who introduced variety to the area) Nyamururu Runyoro Cultivated by Alur people that live in 1 Bunyoro and it is not eaten fresh Maturity period Nyakabiriti Lugungu Matchstick (matures early like lighting 7 a match stick) Kabiriti enkooto Runyoro Big match box (matures fast like 6 lighting a matchbox and tubers grow big) 123 Local varieties of cassava: conservation, cultivation and… 2437 Table 3 continued Mid-west Variety Language Meaning Frequency Agong Alur Lasts long (takes long to mature with a 1 long storability in ground) Taste Karangwa Runyoro When eaten fresh one can die 6 Kalinga Lukonjo Bitter 3 Kigita Lutooro Looks and tastes like ghee 3 Tongolo Alur Bitter variety 3 Terengule Alur Very bitter 2 Odieklewo Acholi Liked by goats 2 Lyaholore Runyoro Taste the taste (because its tasty and 6 soft) Ndiabulianoha Runyoro Could make very good flour mixed 1 with millet variety called Ndiabulianoha Morphology Kabaho Runyoro Strong like timber 2 Nylon Very light like nylon 2 Ekwiragura Runyoro Black (stems are dark) 3 Rugogoma Runyoro Bending on the ground (mature stems 4 bend and elongate horizontally) Nyalanda Runyoro Creeps (grows creeping) 3 Kacumu Runyoro Spear (leaves are pointed like a spear) 1 Katebe Runyoro Small. Variety as short as a small chair 1 Kabundaire Rukonjo Grows short 1 Kikofiira Runyoro Big hat (variety grows a canopy that 1 looks like a big hat) Ease to cook Welobediyo Alur Welo (visitor) Bediyo (relax) meaning 3 that visitor should not go hungry. The variety cooks very fast Nyakunyaku Alur Nyaku means a lady (liked by ladies 2 because it cooks fast) Rwebitere Runyoro Dry cassava chips (variety makes good 1 cassava flour) Mafuta Runyoro Oil (soft and easy to cook) 1 Tonguda Runyoro So soft that time is not wasted during 1 pounding Yield Timpaigwamurwaire Runyoro Very high yielding that cannot be 2 harvested by an ill person Nyasenge Lugungu To carry (high yielding may be heavy 3 to carry by one person) Siba empali Runyoro Tighten your belt. Implies that it is 2 high yielding, i.e., one has to tighten their belt to uproot. Kidimo Runyoro Hoe (related to early sprouting) 3 123 2438 G. Nakabonge et al. Table 3 continued Mid-west Variety Language Meaning Frequency Kirimumpali Runyoro In the trouser (high yielding one can 1 sell and earn some money to keep in pocket) Majunza Runyoro Jiggers (produces many tubers 1 compared to ‘‘eggs of a jigger’’) Andrua Lugbara Alone (saying ‘‘husband abandoned me 1 (wife) let me grow this type of cassava to provide me food). Abandoned wife earns from it without support of husband Kalangwa butito Lunyoro Small short roots. Grows small short tubers Disease Nyakhadhika Lugbara Other varieties can be affected by 1 tolerance disease except this one Erwala bwangu Runyoro Susceptible to disease 1 Unknown Eriminiya Lugbara Not known 1 attribute Supiliya Not known Not known 1 Omukolasi Lukonjo Not known 2 Kanyari Runyoro Soot 2 Kibalaya Rukonjo Not known 1 Kasereghenye Rukonjo Not known 1 Kachenche Not known Not known 1 Table 4 Utilization of cassava varieties in the study areas Names of For sale and home For home For sale Total (%) regions consumption (%) consumption (%) only (%) West 3.1 2.6 0.0 5.8 Central 11.5 9.9 0.5 21.5 Eastern 7.6 3.1 0.5 11.0 Northwest 17.8 0.3 0.3 18.3 Mid-west 32.5 6.8 0.0 39.3 Mid-north 3.7 0.5 0.0 4.2 Total 76.2 23.3 1.3 100.0 3.5 Farmers’ preferences for cultivation and selection of cassava local varieties Generally the reasons reported for increased production included: high yields (165.1%), tastiness (144.20%), good cooking quality (103.90%), early maturity (76.20%), tolerance 123 Local varieties of cassava: conservation, cultivation and… 2439 Table 5 Factors that farmers put into consideration when selecting cassava varieties in 6 agro-ecological zones of Uganda Region Southwest Central Eastern Northwest Mid-west Mid-north Average (%) (%) (%) (%) (%) (%) (%) Tastiness 21.10 36.00 23.10 14.00 20.60 29.40 24.0 High yielding 15.80 26.70 34.60 36.00 34.40 17.60 27.5 Early maturing 26.30 16.00 7.70 14.00 12.20 0.00 12.7 Tolerance to disease 10.50 10.70 3.80 6.00 5.30 11.80 8.0 Good cooking quality 21.10 2.70 19.20 20.00 11.50 29.40 17.3 Marketability 0.00 2.70 7.70 0.00 5.30 11.80 4.6 Storability in the ground 5.30 5.30 3.80 10.00 10.70 0.00 5.9 to disease (48.10%), storability (35.10%) and marketability (27.50%). In central Uganda, the highest ranked reason for increase in cultivation of varieties grown was taste (36%), in southwest it was early maturity period (34.6%), in eastern Uganda, northwest and mid- west, high yields were recorded highest at 34.60, 36.0 and 34.40%, respectively. In mid- north, however, taste and good cooking quality were the attributes most preferred by farmers at 29.40% in both categories (Table 5). 3.6 Reasons for decreased cultivation of cassava local varieties Some farmers also believed that there was decreased cultivation of local cassava varieties due to reduced yields (211.3%), pests and disease susceptibility (67%), bitter taste (51.5%), lack of market (19.4%), introduction of improved varieties (220.50%), limited land for cultivation (19.70%) and long maturity period (10.6%). In southwestern and mid-western Uganda, farmers thought that the major reason for decreased production was reduced yields at 42.9 and 42.10%, respectively, while in central, mid-northern and northwestern Uganda, most farmers 35.3, 66.7 and 42.9%, respectively, believed that introduction of improved varieties contributed most to reduced cultivation of local varieties. In eastern Uganda, reduced yields and introduction of improved varieties at 35% were reported as the most contributing factors to decreased cultivation of cassava in the areas surveyed (Table 6). 3.7 Conservation practices undertaken by farmers and sources of planting material Farmers reported that once a variety is introduced in the area for the first time they ensure that it is not lost if it possesses the traits of interest. This is achieved by replanting immediately after harvesting (331.10%), planting in multiple plots (171.70%), sharing with others in their networks to grow as backups (55.6%) and use of clean planting material (41.6%) (Table 7). Therefore, 385.4% reported that they use their own planting materials. But in case there is need to plant a specific variety that is not available on their farms, they can obtain it for free from other households within their social networks (161.2%). Occasionally stakes are obtained from outsiders for free (24.7%), are supplied by authorities (13.4%) and also purchased from other communities (15.6%) (Table 8). 123 2440 G. Nakabonge et al. Table 6 Farmer responses for decreased cultivation of cassava local varieties in 6 agro-ecological zones of Uganda Region Southwest Central Eastern Northwest Mid-west Mid-north Average (%) (%) (%) (%) (%) (%) (%) Reduced yields 42.90 29.40 35.00 28.60 42.10 33.30 35.22 Pests and disease 0.00 17.60 30.00 7.10 12.30 0.00 11.17 susceptibility Bitter taste 28.60 8.80 0.00 7.10 7.00 0.00 8.58 Poor market 0.00 8.80 0.00 3.60 7.00 0.00 3.23 Planting new improved 14.30 35.30 35.00 42.90 26.30 66.70 36.75 varieties Reduced land for 14.30 0.00 0.00 3.60 1.80 0.00 3.28 cultivation Long maturity period 0.00 0.00 0.00 7.10 3.50 0.00 1.77 Table 7 Methods of preserving cassava local varieties on farm Responses Regions Total Southwest Central Eastern Northwest Mid- Mid- west north Keep in multiple plots 42.90% 29.10% 43.30% 23.70 16.00% 16.70% 171.70% Replanting 54.30% 67.50% 40.30% 39.60 51.60% 77.80% 331.10% Share with others to grow as 0.00% 0.00% 11.90% 20.10% 18.00% 5.60% 55.6% backup Use clean planting materials 2.90% 3.40% 4.50% 16.50% 14.30% 0.00% 41.6% Total 35 117 67 139 244 18 620 Table 8 Sources of planting materials for cassava local varieties in the study area Responses Regions Total West Central Eastern Northwest Mid- Mid- west north Own 79.20% 68.20% 66.70% 51.90% 56.90% 62.50% 385.40% Gift from person in 16.70% 27.10% 26.70% 26.60% 32.80% 31.30% 161.2% community Gift from outside 0.00% 4.70% 6.70% 7.60% 5.70% 0.00% 24.7% Supplied by authorities 0.00% 0.00% 0.00% 2.50% 4.60% 6.30% 13.4% Purchased from outsider 4.20% 0.00% 0.00% 11.40% 0.00% 0.00% 15.6% Total 24 85 45 79 174 16 423 123 Local varieties of cassava: conservation, cultivation and… 2441 4 Discussion 4.1 Cassava local varieties cultivated by farmers Farmers are known to possess systems of categorizing and recognizing plant and animal species in their communities (Mtunguja et al. 2014). Similarly the naming of varieties as reported by farmers in the current study was based on the different attributes possessed by a variety, the origin of the variety (area where it was obtained) and the person who introduced the variety to the community and the morphological variation of the variety (Table 3). For instance, Welobediyo from mid-western Uganda means ‘‘relax,’’ farmers reported that the variety was named because it cooks very fast thus a saying that goes like ‘‘with Welobediyo, a visitor should relax since food will be available in the shortest time possible’’. Sibampali from mid-western Uganda meaning ‘‘tighten your trouser’’ because variety is high yielding one should have enough energy to uproot it. Mercury variety named because farmers believe that it is as highly marketable as mercury. Gilgil variety from northwestern Uganda named after a village where it was mostly grown. Ocol meaning ‘‘dark’’ in Alur because leaves and stems of that variety are dark in color. Omoo meaning ‘‘coming together’’ in Lugbara, Clans that used to have conflicts were united after sharing Omoo variety. Katebe meaning ‘‘small chair’’ in Bantu language, because the variety grows short stems and branches thus the idiom ‘‘Mumpi nga Katebe translated, as short as a chair’’. The naming of cassava varieties as reported by farmers in this study is similar to what has been reported in other regions and crop varieties. For instance, Mehta et al. (2009) reported that the naming criteria of rice varieties in the Himalayas is based on morphological traits, environmental adaptability, agronomic traits, place of origin and local recipes. In Tanzania, however, Mtunguja et al. (2014) observed that famers use mainly well adapted morphological descriptors to distinguish between cassava varieties. They could successfully distinguish between bitter and sweet varieties. In Africa, some communities breed local crop varieties on the basis of indigenous knowledge and use local taxonomy in selecting and naming varieties (Haugerud and Collinson 1990; Almekinders et al. 1994). In mid-west agro-ecological zone specifically in the district of Buliisa, some communities reported a practice of exploring cassava attributes by germinating cassava seeds and evaluating the seedling specifically for culinary attri- butes, disease susceptibility and yield. In this region, some varieties are named according to the individual who sprouted, evaluated and later distributed them to the entire com- munity. Varieties such as Nyarale ‘‘introduced by Rale’’, Nyaru-ucha ‘‘introduced by Ucha’’, Nyaruzele ‘‘introduced by Zele’’ and Nyaeva ‘‘introduced by Eva’’ were generated from such practices. This raises the importance of local breeders within communities and the importance of establishing community-based breeding programs for cassava. The study has shown that, farmers involved in local breeding are highly appreciated to an extent that the varieties generated after such practices are named after them. Therefore, farmers’ involvement in planning and execution of breeding strategies could enhance adoption rates of improved varieties. Occasionally, cassava seedlings randomly germinate and grow among vegetatively propagated plants. However, due to the highly heterozygous nature of cassava it is most likely that the seeds are genetically dissimilar from the parents. And it’s also possible that the seedlings are disease free since vegetatively propagated material serve as the major source of diseases (Elias et al. 2000). Farmers normally get interested in these seedlings, evaluate and protect them for the next growing season if they possess agronomic and 123 2442 G. Nakabonge et al. culinary values. In this way, farmers incorporate genetic variability from sexual repro- duction into the local cassava variety gene pool. 4.2 Utilization of cassava varieties The study indicated that most farmers 76.2% cultivate cassava local varieties for both home consumption and sale. With this category being dominated by farmers from mid- west (32.5%), northwest (17.8%) and central Uganda (11.5%), respectively (Table 4), in mid-western Uganda farmers with small acreage of land grow cassava mostly for home consumption. Farmers from central Uganda where Banana is a major food crop also commonly grow cassava for home consumption, consumed fresh as snacks and making flour for pancakes for sale. During the survey it was noted that commercial farmers mostly grow improved varieties that are known to be high yielding with early maturity period and do not care much about selection and on-farm retention or conservation since improved varieties are distributed from government and non-government organizations (NGO) periodically. The growing of local varieties mostly for home consumption has ensured on- farm conservation, since farmers always keep a few but a variety of plants for food security and also to complement the positive and negative traits that could be in the local varieties. Similar to previous findings from other regions, in the current study most farmers believed that cassava local varieties are better for food security than improved varieties because they have a longer storability in the soil. Bitter varieties make good flour for food and local beer and therefore helpful during drought and also thought to be less susceptible to disease (Mtunguja et al. 2014; Akintunde and Obayelu 2016). Bitterness is also thought to be a food security measure since it is avoided by thieves. These findings emphasize the need to incorporate farmer preferences in conservation and breeding strategies in order to improve productivity and sustainable use of cassava genetic resources. 4.3 Production dynamics of cassava local varieties The farmers that participated in the study had been cultivating cassava for not less than 5 years up to 50 years and more. They were therefore believed to be knowledgeable about cassava production dynamics over the years. Most farmers believed that cultivation of cassava local varieties has increased in the past few years (Table 5). The major reasons for increased cassava production in general included: tastiness (144.20%), high yields (165.1%), early maturity (76.10%), disease tolerance (48.10%), good cooking quality (103.9%), marketability (27.5%) and storability (35.10%). Farmers emphasized culinary attributes (taste), high yield and cooking quality as the major reason for variety cultivation and retention. Elias et al. (2000) observed that while farmers generally prefer high yielding varieties, they may preserve lower yielding varieties in parallel with more productive varieties, due to cultural preferences such as taste or cooking quality. In the process, farmers manage the risk of a calamitous crop loss by keeping several different varieties in production at the same time and often in the same field. In northwestern, mid-northern and some parts of eastern Uganda, cassava is mostly processed prior to consumption due to the high cyanogenic compounds in the cultivated varieties (Balyejusa Kizito et al. 2006). In these regions, bitter varieties are considered tastier after processing than the sweet varieties and thus high starch content is a key trait that farmers look for in the varieties cultivated. 123 Local varieties of cassava: conservation, cultivation and… 2443 4.4 Conservation practices undertaken by farmers on the cassava varieties It is not unusual for farmers to exchange stem cuttings with their neighbors and neigh- boring communities, resulting in fields with a mixture of local cassava varieties (Andersson and de Vicente 2010). And it is not common that cassava planting materials for local varieties are sold or bought. Although farmers may not deliberately conserve cassava genetic resources, they do so through traditional practices that ensure on-farm retention of varieties over years. Cassava farmers in Uganda use various practices to ensure retention of varieties on farm. They plant varieties in multiple plots (40.3%), replant immediately after harvesting (84.2%), share with others (21.1%) and use clean planting material (17.4. %). In case planting for some reason does not happen immediately after harvesting, farmers reported that stakes can be kept viable for some time under the shade preferably in an upright position until the next planting. These methods ensure that in case of any catastrophic events, varieties are not lost. With the prevalence of viral diseases, some farmers have learnt to recognize symptoms associated with cassava viral diseases and select planting material from plants that are asymptomatic (Table 7). This strategy not only ensures availability of food and seed for the next planting but also reduces the spread of diseases on farm and within the community. The farmers were commended and encouraged to continue planting disease-free cuttings in order to reduce the spread of diseases. The information generated during this study indicates that farmers in most areas where cassava is grown have more or less similar practices of maintenance and preservation of cassava genetic resources (Balyejusa Kizito et al. 2006; Elias et al. 2001; Mtunguja et al. 2014; Akintunde and Obayelu 2016). However, it was observed during this study that farmers from the study areas are not aware of the scientific importance of conservation of cassava genetic resources rather preserve varieties for the sake of supporting their households’ needs. Therefore, government and development partners should invest in sensitizing farmers about the importance of on-farm conservation of crop genetic resources for future use. 5 Conclusion The information obtained from this study indicates that farmers are still growing cassava local varieties despite the distribution of disease-tolerant and high yielding improved varieties. It is also clear that farmers have preferences that influence the decisions taken to retain or abandon particular varieties. Based on their local knowledge, farmers understand the need to grow a diversity of cassava as this can help in times of scarcity. Although improved varieties have enabled continued cassava production in Uganda and the region, their cultivation and adoption may reduce the number of varieties cultivated by farmers leading to erosion of genetic diversity (Tripp 1996). As the government of Uganda pro- motes research toward cassava improvement, measures should be put in place to ensure protection and sustainable utilization of its genetic resources. Acknowledgements The authors wish to acknowledge technical support from all scientists and technicians from the Root crops program at the National Crops Resources Research Institute who participated in this study and also financial support from East African Agricultural Productivity Project (EAAPP) and the Next Generation Cassava Breeding project. 123 2444 G. Nakabonge et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter- national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. References Akintunde, O. O., & Obayelu, O. A. (2016). Farmers’ perception of on-farm conservation of cassava biodiversity in Ogun State, Nigeria. International Food Research Journal, 23(5), 2265–2270. Alicai, T., Omongo, C., & Maruthi, M. (2007). Re-emergence of cassava brown streak disease in Uganda. Plant Disease, 91, 24–29. Almekinders, C. J. M., Louwaars, N. P., & de Bruijn, G. H. (1994). Local seed systems and their importance for an improved seed supply in developing countries. Euphytica, 78, 207–216. Andersson, M. S., & de Vicente, M. C. (2010). Cassava, manioc, yuca. In M. S. Andersson & M. S. de Vicente (Eds.), Gene flow between crops and their wild relatives (pp. 125–146). Baltimore: Johns Hopkins University Press. Balyejusa Kizito, E. (2006). Genetic and root growth studies in cassava (Manihot esculenta Crantz): Implications for breeding. Doctor’s dissertation. ISSN 1652-6880, ISBN 91-567-7131-1. Balyejusa Kizito, E., Chiwona-Karltun, L., Egwang, T., Fregene, M., & Westerbergh, A. (2007). Genetic diversity and variety composition of cassava on small scale farms in Uganda: An interdisciplinary study using genetic markers and farmer interviews. Genetica, 130, 301–318. Balyejusa Kizito, E., Ro¨nnberg-Wa¨stljung, A.-C., Egwang, T., Gullberg, U., Fregene, M., & Westerbergh, A. (2006). Quantitative trait loci controlling cyanogenic glucoside and dry matter content in cassava (Manihot esculenta Crantz) roots. Hereditas, 144(4), 129–136. Elias, M., McKey, D., Panaud, O., Anstett, M. C., & Thierry, R. (2001). Traditional management of cassava morphological and genetic diversity by the Makushi Amerindians (Guyana, South America): Per- spectives for on-farm conservation of crop genetic resources. Euphytica, 120, 143–157. Elias, M., Panaud, O., & Robert, T. (2000). Assessment of genetic variability in a traditional cassava (Manihot esculenta Crantz) farming system, using AFLP markers. Heredity, 85, 219–230. FAO. (2009). FAO and traditional knowledge: The linkages with sustainability, food security and climate change impacts (pp. 184–185). Rome: FAO. FAO. (2010). The second report on the state of the world’s plant genetic resources for food and agriculture. Rome. Gwali, S., Okullo, J. B. L., Eilu, G., Nakabonge, G., Nyeko, P., & Vuzi, P. (2011). Traditional management and conservation of Shea trees (Vitellaria paradoxa subspecies nilotica) in Uganda. Environment, Development and Sustainability, 14(3), 347–363. Haugerud, A., & Collinson, M. P. (1990). Plants, genes and people: Improving of plant breeding in Africa. Experimental Agriculture, 26(3), 341–362. Hillocks, R. J. (2002). Cassava in Africa. In R. J. Hillocks, J. M. Thresh & A. C. Bellotti (Eds.), Cassava: Biology, production, and utilization (pp. 41–54). Wallingford: CAB International. Jansson, C., Westerbergh, A., Zhang, J., Hu, X., & Sun, C. (2009). Cassava, a potential biofuel crop in (the) People’s Republic of China. Applied Energy, 86, 95–99. Kawuki, R. S., Kaweesi, T., Esuma, E., Pariyo, A., Kayondo, S. I., Ozimati, A., et al. (2016). Eleven years of breeding efforts to combat cassava brown streak disease. Breeding Science Preview, 66(4), 560–571. Langlands, J. (1972). Cassava in Uganda. Uganda Journal, 10, 273–286. Legg, J. P. (1999). Emergence, spread and strategies for controlling the pandemic cassava mosaic virus disease in East and Central Africa. Crop Protection, 18, 627–637. Legg, J. P., & Fauquet, C. M. (2004). Cassava mosaic geminiviruses in Africa. Plant Molecular Biology, 56(4), 585–599. Mehta, P. S., Rathi, R. S., Negi, K. S., & Ojha, S. N. (2009). Farmer’s criteria for naming crop varieties: A case on rice varieties in Kumaon Himalaya of Uttarakhand. Indian Journal of Plant Genetic Resources, 22(3), 215–220. Mtunguja, M. K., Laswai, H. S., Muzanila, Y. C., & Ndunguru, J. (2014). Farmer’s knowledge on selection and conservation of cassava (Manihot esculenta) genetic resources in Tanzania. Journal of Biology, Agriculture and Healthcare, 4(10), 122–129. Nassar, N. M. A. (2000). Cytogenetics and evolution of cassava (Manihot esculenta Crantz). Genetics and Molecular Biology, 23, 1003–1014. 123 Local varieties of cassava: conservation, cultivation and… 2445 Nassar, N. M. A., & Ortiz, R. (2006). Cassava improvement: Challenges and impacts. Journal of Agri- cultural Science, 145, 163–171. Negi, S. C. (2010). Traditional knowledge and biodiversity conservation: Examples from Uttarakhand, Central Himalaya. Mountain Research and Development, 30(3), 259–265. Ng, N. Q., & Ng, S. Y. C. (2002). Genetic resources and conservation. In R. J. Hillocks, J. M. Thresh & A. C. Bellotti (Eds.), Cassava: Biology, production, and utilization (pp. 167–177). Wallingford: CABI Publishing. Nuwamanya, E., Bagumal, Y., Kawuki, R. S., & Rubaihayo, P. R. (2009). Quantification of starch physicochemical characteristics in a cassava segregating population. African Crop Science Journal, 16, 191–202. OECD. (2014). Environment directorate Joint meeting of the chemicals committee and the working party on chemicals, pesticides and biotechnology. Consensus document on the biology of cassava (Manihot esculenta Crantz). Series on Harmonisation of Regulatory Oversight in Biotechnology, No. 57, OECD, Paris. Available on the BioTrack website at (http://www.oecd.org/chemicalsafety/). Okogbenin, E., Porto, M. C. M., Egesi, C., Mba, C., Ospinosa, E., Santos, L. G., et al. (2007). Marker aided introgression of CMD resistance in Latin American germplasm for genetic improvement of cassava in Africa. Crop Science, 47, 1895–1904. Parajuli, D. R., & Das, T. (2013). Indigenous knowledge and biodiversity: Interconnectedness for sus- tainable development. International Journal of Scientific & Technology Research, 2(8), 220–224. Peroni, N., & Hanazaki, N. (2002). Current and lost diversity of cultivated varieties, especially cassava, under swidden cultivation systems in the Brazilian Atlantic forest. Agriculture, Ecosystems & Envi- ronment, 92, 171–183. Tripp, R. (1996). Biodiversity and modern crop varieties: Sharpening the debate. Agriculture and Human Values, 13(4), 48–63. Turyagyenda, L. F., Kizito, E. B., Ferguson, M. E., Baguma, Y., Harvey, J. W., Gibson, P., et al. (2012). Genetic diversity among farmer preferred cassava landraces in Uganda. African Crop Science Journal, 20, 15–30. UBOS. (2010). Crop census and production report. In: Uganda census of Agriculture. Uganda Bureau of Statistics, Ministry of Agriculture, Animal Industry and Fisheries, Entebbe. Wilder, B. T., O’Meara, C., Monti, L., & Nabhan, G. P. (2016). The importance of indigenous knowledge in curbing the loss of language and biodiversity. BioScience, 66(6), 499–509. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png "Environment, Development and Sustainability" Springer Journals

Local varieties of cassava: conservation, cultivation and use in Uganda

Loading next page...
 
/lp/springer-journals/local-varieties-of-cassava-conservation-cultivation-and-use-in-uganda-yL3OL2sLJ7

References (77)

Publisher
Springer Journals
Copyright
Copyright © 2017 by The Author(s)
Subject
Environment; Sustainable Development; Environmental Management; Environmental Economics; Ecology; Economic Growth; Economic Geology
ISSN
1387-585X
eISSN
1573-2975
DOI
10.1007/s10668-017-9997-6
Publisher site
See Article on Publisher Site

Abstract

Environ Dev Sustain (2018) 20:2427–2445 https://doi.org/10.1007/s10668-017-9997-6 Local varieties of cassava: conservation, cultivation and use in Uganda 1,3 1 2 • • Grace Nakabonge C. Samukoya Y. Baguma Received: 8 April 2017 / Accepted: 21 June 2017 / Published online: 28 June 2017 The Author(s) 2017. This article is an open access publication Abstract The study explored the theory that on-farm conservation of cassava germplasm is influenced by farmers’ traditional and cultural preferences of particular varieties. Tra- ditional knowledge practices that are used for on-farm conservation of cassava germplasm as well as cassava attributes for selection were assessed. The findings obtained from the study indicated that farmers use traditional knowledge to select and preserve cassava germplasm for future use. It was also clear that farmers have their preferences such as culinary attributes, storability in the ground, early maturity and cooking quality to mention but a few that influence the decisions taken to retain or abandon cultivation of varieties. Therefore, by planting varieties in multiples plots, replanting immediately after harvesting, sharing with others in the community and planting disease-free materials, farmers ensure that they preserve varieties of interest for decades. The information generated during this study could inform development policies tailored toward ensuring sustainable on-farm conservation of cassava genetic resources. Keywords On farm  Socio-cultural  Germplasm  Traditional farmer knowledge 1 Introduction Crop genetic resources are important in ensuring food security since they provide the raw materials needed for crop improvement (FAO 2010). Farmers over the years have culti- vated a variety of crops on their farms that are adapted to particular needs and conditions & Grace Nakabonge gnakabonge@gmail.com National Crops Resources Research Institute (NaCRRI), P. O. Box 7084, Kampala, Uganda National Agricultural Research Organization (NARO), P.O. Box 295, Entebbe, Uganda College of Agriculture and Environmental Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda 123 2428 G. Nakabonge et al. (Tripp 1996). It is from the human selection practices that crop genetic resources have been preserved for many decades (Gwali et al. 2011). However, the introduction of improved varieties originating from crop improvement programs to combat emergence of diseases and pests as well as other environmental stresses are subjecting several crops genetic resources to genetic erosion (Peroni and Hanazaki 2002; Legg and Fauquet 2004; Alicai et al. 2007). It is important to support conservation of crop genetic resources by fully understanding the traditional knowledge and practices that influence their selection maintenance and conservation (Negi 2010; Parajuli and Das 2013; Wilder et al. 2016). It is important to be mindful of the notion that farmers may not preserve varieties for the sake of conservation but rather because they are adapted to particular needs and conditions that may change at any given time (Tripp 1996). Traditional farmer knowledge is not only important for its socio-cultural value but also for a number of reasons most of which are relevant to the conservation of crop biodiversity. While it has been the responsibility of genetic resource and research centers to recover germplasm before it is lost and to ensure its introduction into germplasm banks (FAO 2010), it is important that the role of local farmers in genetic resource conservation is recognized since they aid in ensuring food and agricultural diversity, valuable landscape, livelihoods and food security. Nevertheless, traditional livelihoods and indigenous plant varieties are increasingly endangered by large- scale commercialization of agriculture, population dynamics, land-use/cover changes and the impacts of climate change (FAO 2009). Cassava (Manihot esculenta Crantz) is one of the crops that have been conserved by farmers for decades, and it is thought to have been cultivated from 3000 to 7000 years ago in South America (Ng and Ng 2002). Cassava is an annual root crop that is widely thought to have originated from the Amazon basin (Nassar 2000). The crop was later introduced to West Africa from which it spread to other African nations (Hillocks 2002; Okogbenin et al. 2007). In Uganda Cassava was introduced between 1862 and 1875 by the Asian traders and spread to almost all parts of the country (Langlands 1972). Its spread and cultivation was due to its adaptability to a variety of agro-ecological conditions and its tolerance to drought (Nassar and Ortiz 2006; OECD 2014). Cassava is therefore regarded as a food security crop in Uganda and Africa as a whole (Balyejusa Kizito 2006). Currently, Cassava is grown in many parts of Uganda as one of the major food crops and is globally gaining economic importance for its starch utilization in food, feed and industry (Legg 1999; Jansson et al. 2009; Nuwamanya et al. 2009; Turyagyenda et al. 2012). The duration of cassava cultivation in Uganda implies that it has evolved over time and has undergone both environmental and human selection on farmers’ fields. Cassava is consequently thought to be harboring important genes that will be of use in the future improvement of the crop (Turyagyenda et al. 2012). However, its genetic diversity is threatened by diseases most notably cassava mosaic and cassava brown streak diseases that have resulted into reduced productivity and loss of germplasm (Legg and Fauquet 2004; Alicai et al. 2007; Kawuki et al. 2016). The current global focus of breeding cassava varieties for industrial purposes will further threaten the cassava genetic resources as farmers will focus on growing cassava for commercial purposes (Jansson et al. 2009). For instance, in Teso region, the farmers are mainly growing NaSe , the improved variety from cassava breeding program. It is difficult to find landraces like Ebwanatereka and Jaribu which were once common (Mr. Okaasai Opolot. personal communication February 10 2014). The loss of cassava genetic resources might com- promise future breeding of the crop thus the need for support toward its ex situ and in situ conservation. 123 Local varieties of cassava: conservation, cultivation and… 2429 Previous studies on management and differentiation of local varieties by farmers in Uganda revealed that there could be variation in on-farm selection and cultivation of varieties influenced by cultural views (Balyejusa Kizito et al. 2006). For instance, some cultures do not cultivate bitter varieties because they do not consider them as food, whereas other cultures mostly in mid-northern Uganda and northwestern cultivate mostly bitter varieties that are considered to be tastier after processing than sweet varieties (Balyejusa Kizito et al. 2006, 2007). Bitterness is also a security measure as thieves cannot readily use/sell them. Therefore, farmers have perceptions about local varieties that need to be fully understood and integrated into future on-farm conservation policy that is accept- able and legitimate to the local communities. Understanding the socio-cultural factors that influence farmer decision making during the selection and retention of cassava varietal diversity is crucial for future improvement of the crop. The current study was aimed at assessing the farmer knowledge and practices that influence decision making in selection and retention of cassava local varieties in 6 agro-ecological zones of Uganda. The objectives were to document farmer varieties based on farmers’ knowledge, to determine the farmers’ preferences for cultivation, utilization and selection, and to assess conserva- tion practices undertaken by farmers on the cassava varieties. Undertaking a study that will generate knowledge on conservation of food security crop like cassava is useful in the quest for attaining sustainable development goal 2 which focuses on ending hunger and all sorts of malnutrition by 2030. Furthermore, the study responds to agenda 21 of the earth summit that calls for programs and policies for strengthening biodiversity conservation for sustainable economic development and environmental protection. 2 Methods 2.1 Study area The study was conducted in Uganda which is located in East Africa and lies astride the 0 0 0 0 Equator, between latitudes 412 N and 129 S and longitudes 2934 W and 350 E. Temperatures are in the range of 15–30 C. The country can be suitably divided into seven broad agro-ecological zones which have similar economic and social backgrounds, and in which ecological conditions (soil types, topography, rainfall), farming systems and practices are fairly homogeneous (UBOS 2010). Six agro-ecological zones southwest, mid- west, mid-north, eastern, central and northwestern Uganda were surveyed. In eastern agro- ecological zone, districts of Kaberamaido, Soroti, Amuria, Serere, Mbale, Manafwa, Busia and Iganga were surveyed. Southwestern districts of Rukungiri, Bushenyi, Buhinga and Ntungamo were surveyed. Mid-western districts surveyed include Kasese, Hoima, Kibaale, Kabalore, Buliisa, Kiryandongo, Kyenjojo, Kyegegwa and Kiryandongo. In northwestern Uganda, districts of Koboko, Nebbi, Arua were surveyed, whereas in central agro-eco- logical zone, districts of Kalangala, Butambala. Masaka, Kayunga, Luwero, Mukono, Rakai, Nakaseke, Bukomansimbi and Kalungu were surveyed. Mid-northern districts of Gulu, Lira and Apac were surveyed. The study focused on collecting cassava local vari- eties and the associated traditional knowledge for in vitro conservation. In this paper, a ‘‘local variety’’ is a cassava landrace identified by farmers under a single ethnic name which had been grown in the area for at least 20 years. The data collection was conducted between 2013 and 2016. 123 2430 G. Nakabonge et al. 2.2 Sampling strategy Districts from each of the 6 agro-ecological zones (Fig. 1) were selected purposively based on their track record in cassava growing. Sub-counties and households were purposively sampled using snowball method where prior information was obtained from extension workers at the districts that they possess cassava local varieties in their gardens. From each district, 4 sub-counties were further sampled. Households within sub-counties were sam- pled based on information from key informants or from the previous household about the presence of cassava local varieties. A total of 384 respondents were interviewed using a questionnaire across all the selected regions. Variables investigated included farmer preferences for cassava cultivation, utilization and cassava conservation practices as well as cassava local varieties cultivated by farmers. Varieties were recorded as named by farmers in their native languages of the different ethnic groups in the different sites selected. 2.3 Data analysis Data were coded in Microsoft Excel and analyzed using the Statistical Package for Social Scientists (SPSS) version 24.0 (2016 release, _IBM Corp., Chicago, IL, USA) using descriptive statistics. Multiple response data for conservation practices and production of cassava local varieties were grouped together using the multiple response command of SPSS. The descriptive words provided for each use were categorized and counted through the multiple responses. Data were presented as frequencies in the households sampled, percentages and cross-tabs. Cassava local varieties were also listed using the ethnic names provided by farmers (Fig. 2). Key 1 WestNile 2 Northern 3 Eastern 4 Midwestern 5 Central 6 Western Fig. 1 Location of the 6 agro-ecological zones of Uganda where the study was conducted 123 Local varieties of cassava: conservation, cultivation and… 2431 35% Years of growing cassava by region 30% 25% 20% 20% 14% 15% 11% 10% 10% 7% 6% 5% 4% 3% 3% 5% 2% 2% 2% 2% 2% 2% 1% 0% 0% Central Eastern Mid-Western Northern West Nile Western Years of growing cassava by resgion <5 years 5-19 years 20-49 years 50+ Fig. 2 Duration of cassava cultivation in the study areas categorized into\5, 5–19, 20–49 and 50 years 3 Results 3.1 Duration of cassava cultivation The information generated during this study was obtained from farmers who had been cultivating cassava for a period of not less than 5–50 years and more. Mid-western Uganda and central Uganda recorded the longest period of cassava cultivation in the study area with central Uganda having the highest number of farmers who reported having been growing cassava for the last 50 years and more. The mean age for respondents was 47 male and 46 female. 3.2 Production dynamics of cassava local varieties 3.2.1 Acreage under cassava cultivation In the current study, 60% of all households interviewed grow cassava on land between 1 and 4.9 acres followed by 32.7% that grow cassava on\1 acre, 4.9% on 5–9.9 acres and 1.8% on 10 or more acres. In mid-western, central, eastern, northwest and mid-north Uganda, majority of farmers grow cassava on 1–4.9 acres, at 19.7, 16.1, 7.5, 11.4 and 3.4%, respectively (Table 1). 3.2.1.1 Number of varieties cultivated by farmers The current study indicated that farmers grow up to a maximum of 14 varieties on their farms. However, most farmers grow between 1 and 4 local varieties (Table 2). The highest number of varieties grown on farm was reported from northwestern and mid-western Uganda. 3.3 Local varieties of cassava in the different agro-ecological zones of Uganda A total of 217 local varieties were reported by farmers and stakes collected for conser- vation at the National crops resources research institute (NaCRRI), Namulonge, Uganda. Of these, 49 were collected from northwest, 89 from mid-west, 33 from central, 11 from Percentage (%) 2432 G. Nakabonge et al. Table 1 Acreage of cassava cultivation in central, eastern, mid-west, mid-north, northwest and west Uganda Region \1 acre (%) 1–4.9 (%) 5–9.9 (%) 10? (%) Total (%) Area of land under cassava by region Central 5.5 16.1 21.6 Eastern 2.6 7.5 0.5 0.3 10.9 Mid-west 15.3 19.7 2.9 1.6 39.5 Mid-north 0.8 3.4 4.2 Northwest 5.2 11.4 1.6 18.2 Southwest 3.4 2.3 5.7 Total 32.7 60.5 4.9 1.8 100.0 Table 2 Number of cassava varieties cultivated per household in the six regions based on farmer responses Region Number of varieties Total 1 (%) 2 (%) 3 (%) 4 (%) 5 (%) 6 (%) 7 (%) 8 (%) 14 (%) Central 11.2 4.4 2.1 2.1 0.0 0.0 1.8 0.0 0.0 21.6 Eastern 3.1 4.5 1.6 0.5 0.3 1.3 0.0 0.0 0.0 11.3 Mid-west 6.8 5.2 10.2 6.5 5.2 1.6 2.9 1.3 0.0 39.6 Mid-north 1.8 1.6 0.8 0.0 0.0 0.0 0.0 0.0 0.0 4.2 Northwest 0.8 1.8 1.6 3.9 4.2 1.3 1.0 0.0 3.6 18.2 West 3.9 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.5 Total 27.6 18.8 16.1 13.0 9.6 4.2 5.7 1.3 3.6 100.0 mid-north, 15 from southwest and 20 from eastern Uganda. Nyaraboke, Karangwa, Kabiriti and Kirimumpale were the common varieties from mid-western, whereas Gbasumenge, Abiriya, Mingoro and Sanje were common in northwest. Njule and Kwatamumpale were common in central Uganda. Magana and Ofumbachai were the common varieties in eastern, whereas Bao, Ogwok and Icilcil were common in mid-northern Uganda. Bukalasa was common across all agro-ecological zones surveyed (Table 1). Generally varieties were named based on place of origin (northwest 9, mid-west 14, central 8, southwest 1, mid- north 1), maturity period (northwest 3, mid-west 3, central 1, mid-north 1), taste (northwest 3, mid-west 8, central 3, southwest 2, eastern 2), morphology (northwest 4, mid-west 9, central 3, southwest 3, mid-north 3), ease to cook (northwest 1, mid-west 5, eastern 3), yield (northwest 1, mid-west 6, central 1, southwest 2, eastern 1), disease susceptibility and tolerance (mid-west 2) marketability (central 2, eastern 1), resilience (southwest 1). However, for some varieties farmers did not know the meaning of the names given (Table 3). 3.4 Utilization of cassava local varieties Primary purpose of cassava local varieties in study areas was home consumption and sale (76.2%). 23.3% responded that cassava local varieties are cultivated mainly for home consumption and 1.3% grow local varieties for sale only (Table 4). 123 Local varieties of cassava: conservation, cultivation and… 2433 Table 3 Cassava varieties collected as named by farmers in the 6 agro-ecological zones Area of Northwest origin/source Variety Language Meaning Frequency (a) Categorization attribute Nyarukecha Alur From Okecha (name of person who 3 introduced variety to the area) Drua Lugbara Many tubers 3 Mingoro Lugbara Originated from Congo through the 7 Mingoro Clan Nyamatya Alur Introduced to community by Matya 2 Ochok-Ola Lugbara Mainly grown by Ochok tribe 3 Abdu Introduced to community by Abdu 3 Bukalasa From a place called Bukalasa 3 Ariwara Unknown from From a place called Ariwara in Congo 4 DRC Aliba Lugbara Gbanda meaning cassava; Aliba refers to 2 gbanda name of person who introduced variety Maturity period Abiria Lugbara One that saves you from Hunger 7 (because its early maturing) Godiri Lugbara Hard as tire (the variety is as hard as a 3 tire and takes long to cook) Nyaruchanda Alur Something that wastes time (because 1 variety takes long to mature) Taste Kali Swahiri Bitter 3 Mabulu Madi Came to stay 3 Sanje Lugbara You will see the benefits after planting 6 (because its early maturing) Morphology Palawu Lugbara One that produces many leaves 6 Alia Kakwa Elongated but tasty 2 Ogangara Alur Variety grows many branches 1 Derea Lugbara Short (variety grows short stems/ 1 branches) Ocol Alur Dark (cassava has dark stems) Ease to cook Aluthumoni Kakwa In-law wait (in-law was told to wait for 3 food as it cooks fast) Yield Gilagila Kakwa Help (variety needs a lot of management 1 to yield) Unknown Angaruba Alur 1 attribute Gbasumenge Lugbara 13 Aliba Lugbara 2 gbanda Nyapamitu Alur 4 123 2434 G. Nakabonge et al. Table 3 continued Area of Northwest origin/source Variety Language Meaning Frequency Amua Alur 2 Nyoeroli Alur 2 Joyo Madi moyo 2 Nyarudota Alur 2 Omoo Lugbara 2 Nyamuto Alur 2 Nyamukere Alur 2 Akulu Kakwa 2 Malokwa Lugbara 2 Sombili Not known 1 Thurungule Not known 1 Central Variety name Language Meaning Frequency (b) Categorization attribute Area of origin/source Bukalasa Luganda From a place called Bukalasa 7 Kitobo Luganda Name of place where variety was 2 obtained Naggalabi Luganda Name of place where variety was 1 obtained Butenga Luganda Name of place where variety was 1 obtained Kimaka Luganda Name of place where variety was 1 obtained Nakanaabo Luganda Name of person who introduced 1 variety to the area Nakyanzi Luganda – 3 Lusula – – 3 Morphology Kalitunsi Luganda Eucalyptus (as tall as eucalyptus 4 tree) Njule Luganda Opening (identified by the way 5 leaves open/spread out) Dduka-obusolo Luganda Keep away from rodents (tubers 2 enlarge a distance from stem, thus confuse animals that burrow around the stem looking for tubers to eat) Marketability Kwatamumpale Luganda Pocket (everybody who sees it gets 8 money to buy) Marketable as well Kabwa Luganda Dog (meaning that variety can 2 protect household from hunger in the same manner as dogs protect from enemies 123 Local varieties of cassava: conservation, cultivation and… 2435 Table 3 continued Central Variety name Language Meaning Frequency Yield Mpologoma Luganda Lion (cassava has large tubers) 3 Taste Kitampunu Runyankore Kills pigs (very bitter) 3 Kawogo Luganda Precious cassava variety (very tasty) 2 Matooke Luganda Banana (as soft as bananas) 4 Unknown attribute Machunde 1 Kalimanzira 1 Nakasugga 1 Mid-north Language Meaning Frequency Area of origin/source Ogwok Langi Introduced to place by Ogwok (name 4 of person who introduced variety to the area) Morphology Icilcil Langi Beautiful (because it has beautiful 3 leaves) Bao Langi Strong as timber (stems strong and 5 tall) Maturity period Okonyoladak Acholi Konyo (help). Ladak (transferred to a 2 new place). Best for new inhabitants because it matures early Southwest Language Meaning Frequency Area of origin/source Bukalasa Luganda From a place called Bukalasa 7 Morphology Kiteteyi Runyankole Canopy grows spreading out like a 1 dress Bitamisi Runyankole No threads in tubers 2 Nyakapimpiri Runyankole The shortest one (variety grows very 1 short) Taste Rutuga Runyankole Strangling (can kill instantly if eaten 2 fresh) Busukali Runyankole Sugar (it is as tasty as sugar) 1 Resilience Kyebandira Runyankole To find your own way (it could grow 2 anywhere planted Yields Kitengye Runyankole Piece of cloth (high yielding can be 1 sold to buy clothes) Mpologoma Luganda Lion (variety grows large tubers) 1 Eastern Language Meaning Frequency Ease to cook Ofumbachai Luganda Boiling tea (cooks very fast) 4 Ongada not known Not known 3 Magana Lugishu Not known 5 Marketability Mercury It is as highly marketable as mercury 2 Ekwataula Ateso Tail of a cow (marketable can earn 1 money to buy a cow) 123 2436 G. Nakabonge et al. Table 3 continued Eastern Language Meaning Frequency Taste Jaribu Kumam and Give it a try (taste then will know 3 swahili how tasty it is) Kwinini Ateso As bitter as quinine medicine 2 Yields Emanyai Ateso Marriage (because its high yielding 4 can feed enough people during a wedding Maturity period Omotoka Ateso Motor car. (quick like a car because 4 it matures early) Mid-west Variety Language Meaning Frequency c) Categorization attribute Area of origin/ Kirimumpale Runyoro It is in the trouser (no idea about origin 3 source of meaning) Nyarale Alur Brought by Rale (name of person who 3 introduced variety to the area) Bukalasa Luganda From a place called Bukalasa 10 Timtim Luo Was introduced by Atim (name of 11 person who introduced variety to the area) Kazimwenge Swahiri Grown for brewing 3 Nyaraboke Was first cultivated in a place called 21 Laboke in Kiryandongo by Alur Nyaru-ucha Alur Obtained from Mr Ucha (name of 3 person who introduced variety to the area) Nyaruzele Alur Introduced to community by Ozele 3 (name of person who introduced variety to the area) Nyaeva Rugungu Brought to area by Eva (name of 4 person who introduced variety to the area) Nyakakwa Lugungu Obtained from Kakwa people 4 Rwakakaikuru Runyoro Old (been cultivated in the area for a 1 very long time) Kalerenze Runyoro First cultivated by Kalerenze (name of 1 person who introduced variety to the area) Nyakabibi Rukonjo Introduced by Kabibi (name of person 1 who introduced variety to the area) Nyamururu Runyoro Cultivated by Alur people that live in 1 Bunyoro and it is not eaten fresh Maturity period Nyakabiriti Lugungu Matchstick (matures early like lighting 7 a match stick) Kabiriti enkooto Runyoro Big match box (matures fast like 6 lighting a matchbox and tubers grow big) 123 Local varieties of cassava: conservation, cultivation and… 2437 Table 3 continued Mid-west Variety Language Meaning Frequency Agong Alur Lasts long (takes long to mature with a 1 long storability in ground) Taste Karangwa Runyoro When eaten fresh one can die 6 Kalinga Lukonjo Bitter 3 Kigita Lutooro Looks and tastes like ghee 3 Tongolo Alur Bitter variety 3 Terengule Alur Very bitter 2 Odieklewo Acholi Liked by goats 2 Lyaholore Runyoro Taste the taste (because its tasty and 6 soft) Ndiabulianoha Runyoro Could make very good flour mixed 1 with millet variety called Ndiabulianoha Morphology Kabaho Runyoro Strong like timber 2 Nylon Very light like nylon 2 Ekwiragura Runyoro Black (stems are dark) 3 Rugogoma Runyoro Bending on the ground (mature stems 4 bend and elongate horizontally) Nyalanda Runyoro Creeps (grows creeping) 3 Kacumu Runyoro Spear (leaves are pointed like a spear) 1 Katebe Runyoro Small. Variety as short as a small chair 1 Kabundaire Rukonjo Grows short 1 Kikofiira Runyoro Big hat (variety grows a canopy that 1 looks like a big hat) Ease to cook Welobediyo Alur Welo (visitor) Bediyo (relax) meaning 3 that visitor should not go hungry. The variety cooks very fast Nyakunyaku Alur Nyaku means a lady (liked by ladies 2 because it cooks fast) Rwebitere Runyoro Dry cassava chips (variety makes good 1 cassava flour) Mafuta Runyoro Oil (soft and easy to cook) 1 Tonguda Runyoro So soft that time is not wasted during 1 pounding Yield Timpaigwamurwaire Runyoro Very high yielding that cannot be 2 harvested by an ill person Nyasenge Lugungu To carry (high yielding may be heavy 3 to carry by one person) Siba empali Runyoro Tighten your belt. Implies that it is 2 high yielding, i.e., one has to tighten their belt to uproot. Kidimo Runyoro Hoe (related to early sprouting) 3 123 2438 G. Nakabonge et al. Table 3 continued Mid-west Variety Language Meaning Frequency Kirimumpali Runyoro In the trouser (high yielding one can 1 sell and earn some money to keep in pocket) Majunza Runyoro Jiggers (produces many tubers 1 compared to ‘‘eggs of a jigger’’) Andrua Lugbara Alone (saying ‘‘husband abandoned me 1 (wife) let me grow this type of cassava to provide me food). Abandoned wife earns from it without support of husband Kalangwa butito Lunyoro Small short roots. Grows small short tubers Disease Nyakhadhika Lugbara Other varieties can be affected by 1 tolerance disease except this one Erwala bwangu Runyoro Susceptible to disease 1 Unknown Eriminiya Lugbara Not known 1 attribute Supiliya Not known Not known 1 Omukolasi Lukonjo Not known 2 Kanyari Runyoro Soot 2 Kibalaya Rukonjo Not known 1 Kasereghenye Rukonjo Not known 1 Kachenche Not known Not known 1 Table 4 Utilization of cassava varieties in the study areas Names of For sale and home For home For sale Total (%) regions consumption (%) consumption (%) only (%) West 3.1 2.6 0.0 5.8 Central 11.5 9.9 0.5 21.5 Eastern 7.6 3.1 0.5 11.0 Northwest 17.8 0.3 0.3 18.3 Mid-west 32.5 6.8 0.0 39.3 Mid-north 3.7 0.5 0.0 4.2 Total 76.2 23.3 1.3 100.0 3.5 Farmers’ preferences for cultivation and selection of cassava local varieties Generally the reasons reported for increased production included: high yields (165.1%), tastiness (144.20%), good cooking quality (103.90%), early maturity (76.20%), tolerance 123 Local varieties of cassava: conservation, cultivation and… 2439 Table 5 Factors that farmers put into consideration when selecting cassava varieties in 6 agro-ecological zones of Uganda Region Southwest Central Eastern Northwest Mid-west Mid-north Average (%) (%) (%) (%) (%) (%) (%) Tastiness 21.10 36.00 23.10 14.00 20.60 29.40 24.0 High yielding 15.80 26.70 34.60 36.00 34.40 17.60 27.5 Early maturing 26.30 16.00 7.70 14.00 12.20 0.00 12.7 Tolerance to disease 10.50 10.70 3.80 6.00 5.30 11.80 8.0 Good cooking quality 21.10 2.70 19.20 20.00 11.50 29.40 17.3 Marketability 0.00 2.70 7.70 0.00 5.30 11.80 4.6 Storability in the ground 5.30 5.30 3.80 10.00 10.70 0.00 5.9 to disease (48.10%), storability (35.10%) and marketability (27.50%). In central Uganda, the highest ranked reason for increase in cultivation of varieties grown was taste (36%), in southwest it was early maturity period (34.6%), in eastern Uganda, northwest and mid- west, high yields were recorded highest at 34.60, 36.0 and 34.40%, respectively. In mid- north, however, taste and good cooking quality were the attributes most preferred by farmers at 29.40% in both categories (Table 5). 3.6 Reasons for decreased cultivation of cassava local varieties Some farmers also believed that there was decreased cultivation of local cassava varieties due to reduced yields (211.3%), pests and disease susceptibility (67%), bitter taste (51.5%), lack of market (19.4%), introduction of improved varieties (220.50%), limited land for cultivation (19.70%) and long maturity period (10.6%). In southwestern and mid-western Uganda, farmers thought that the major reason for decreased production was reduced yields at 42.9 and 42.10%, respectively, while in central, mid-northern and northwestern Uganda, most farmers 35.3, 66.7 and 42.9%, respectively, believed that introduction of improved varieties contributed most to reduced cultivation of local varieties. In eastern Uganda, reduced yields and introduction of improved varieties at 35% were reported as the most contributing factors to decreased cultivation of cassava in the areas surveyed (Table 6). 3.7 Conservation practices undertaken by farmers and sources of planting material Farmers reported that once a variety is introduced in the area for the first time they ensure that it is not lost if it possesses the traits of interest. This is achieved by replanting immediately after harvesting (331.10%), planting in multiple plots (171.70%), sharing with others in their networks to grow as backups (55.6%) and use of clean planting material (41.6%) (Table 7). Therefore, 385.4% reported that they use their own planting materials. But in case there is need to plant a specific variety that is not available on their farms, they can obtain it for free from other households within their social networks (161.2%). Occasionally stakes are obtained from outsiders for free (24.7%), are supplied by authorities (13.4%) and also purchased from other communities (15.6%) (Table 8). 123 2440 G. Nakabonge et al. Table 6 Farmer responses for decreased cultivation of cassava local varieties in 6 agro-ecological zones of Uganda Region Southwest Central Eastern Northwest Mid-west Mid-north Average (%) (%) (%) (%) (%) (%) (%) Reduced yields 42.90 29.40 35.00 28.60 42.10 33.30 35.22 Pests and disease 0.00 17.60 30.00 7.10 12.30 0.00 11.17 susceptibility Bitter taste 28.60 8.80 0.00 7.10 7.00 0.00 8.58 Poor market 0.00 8.80 0.00 3.60 7.00 0.00 3.23 Planting new improved 14.30 35.30 35.00 42.90 26.30 66.70 36.75 varieties Reduced land for 14.30 0.00 0.00 3.60 1.80 0.00 3.28 cultivation Long maturity period 0.00 0.00 0.00 7.10 3.50 0.00 1.77 Table 7 Methods of preserving cassava local varieties on farm Responses Regions Total Southwest Central Eastern Northwest Mid- Mid- west north Keep in multiple plots 42.90% 29.10% 43.30% 23.70 16.00% 16.70% 171.70% Replanting 54.30% 67.50% 40.30% 39.60 51.60% 77.80% 331.10% Share with others to grow as 0.00% 0.00% 11.90% 20.10% 18.00% 5.60% 55.6% backup Use clean planting materials 2.90% 3.40% 4.50% 16.50% 14.30% 0.00% 41.6% Total 35 117 67 139 244 18 620 Table 8 Sources of planting materials for cassava local varieties in the study area Responses Regions Total West Central Eastern Northwest Mid- Mid- west north Own 79.20% 68.20% 66.70% 51.90% 56.90% 62.50% 385.40% Gift from person in 16.70% 27.10% 26.70% 26.60% 32.80% 31.30% 161.2% community Gift from outside 0.00% 4.70% 6.70% 7.60% 5.70% 0.00% 24.7% Supplied by authorities 0.00% 0.00% 0.00% 2.50% 4.60% 6.30% 13.4% Purchased from outsider 4.20% 0.00% 0.00% 11.40% 0.00% 0.00% 15.6% Total 24 85 45 79 174 16 423 123 Local varieties of cassava: conservation, cultivation and… 2441 4 Discussion 4.1 Cassava local varieties cultivated by farmers Farmers are known to possess systems of categorizing and recognizing plant and animal species in their communities (Mtunguja et al. 2014). Similarly the naming of varieties as reported by farmers in the current study was based on the different attributes possessed by a variety, the origin of the variety (area where it was obtained) and the person who introduced the variety to the community and the morphological variation of the variety (Table 3). For instance, Welobediyo from mid-western Uganda means ‘‘relax,’’ farmers reported that the variety was named because it cooks very fast thus a saying that goes like ‘‘with Welobediyo, a visitor should relax since food will be available in the shortest time possible’’. Sibampali from mid-western Uganda meaning ‘‘tighten your trouser’’ because variety is high yielding one should have enough energy to uproot it. Mercury variety named because farmers believe that it is as highly marketable as mercury. Gilgil variety from northwestern Uganda named after a village where it was mostly grown. Ocol meaning ‘‘dark’’ in Alur because leaves and stems of that variety are dark in color. Omoo meaning ‘‘coming together’’ in Lugbara, Clans that used to have conflicts were united after sharing Omoo variety. Katebe meaning ‘‘small chair’’ in Bantu language, because the variety grows short stems and branches thus the idiom ‘‘Mumpi nga Katebe translated, as short as a chair’’. The naming of cassava varieties as reported by farmers in this study is similar to what has been reported in other regions and crop varieties. For instance, Mehta et al. (2009) reported that the naming criteria of rice varieties in the Himalayas is based on morphological traits, environmental adaptability, agronomic traits, place of origin and local recipes. In Tanzania, however, Mtunguja et al. (2014) observed that famers use mainly well adapted morphological descriptors to distinguish between cassava varieties. They could successfully distinguish between bitter and sweet varieties. In Africa, some communities breed local crop varieties on the basis of indigenous knowledge and use local taxonomy in selecting and naming varieties (Haugerud and Collinson 1990; Almekinders et al. 1994). In mid-west agro-ecological zone specifically in the district of Buliisa, some communities reported a practice of exploring cassava attributes by germinating cassava seeds and evaluating the seedling specifically for culinary attri- butes, disease susceptibility and yield. In this region, some varieties are named according to the individual who sprouted, evaluated and later distributed them to the entire com- munity. Varieties such as Nyarale ‘‘introduced by Rale’’, Nyaru-ucha ‘‘introduced by Ucha’’, Nyaruzele ‘‘introduced by Zele’’ and Nyaeva ‘‘introduced by Eva’’ were generated from such practices. This raises the importance of local breeders within communities and the importance of establishing community-based breeding programs for cassava. The study has shown that, farmers involved in local breeding are highly appreciated to an extent that the varieties generated after such practices are named after them. Therefore, farmers’ involvement in planning and execution of breeding strategies could enhance adoption rates of improved varieties. Occasionally, cassava seedlings randomly germinate and grow among vegetatively propagated plants. However, due to the highly heterozygous nature of cassava it is most likely that the seeds are genetically dissimilar from the parents. And it’s also possible that the seedlings are disease free since vegetatively propagated material serve as the major source of diseases (Elias et al. 2000). Farmers normally get interested in these seedlings, evaluate and protect them for the next growing season if they possess agronomic and 123 2442 G. Nakabonge et al. culinary values. In this way, farmers incorporate genetic variability from sexual repro- duction into the local cassava variety gene pool. 4.2 Utilization of cassava varieties The study indicated that most farmers 76.2% cultivate cassava local varieties for both home consumption and sale. With this category being dominated by farmers from mid- west (32.5%), northwest (17.8%) and central Uganda (11.5%), respectively (Table 4), in mid-western Uganda farmers with small acreage of land grow cassava mostly for home consumption. Farmers from central Uganda where Banana is a major food crop also commonly grow cassava for home consumption, consumed fresh as snacks and making flour for pancakes for sale. During the survey it was noted that commercial farmers mostly grow improved varieties that are known to be high yielding with early maturity period and do not care much about selection and on-farm retention or conservation since improved varieties are distributed from government and non-government organizations (NGO) periodically. The growing of local varieties mostly for home consumption has ensured on- farm conservation, since farmers always keep a few but a variety of plants for food security and also to complement the positive and negative traits that could be in the local varieties. Similar to previous findings from other regions, in the current study most farmers believed that cassava local varieties are better for food security than improved varieties because they have a longer storability in the soil. Bitter varieties make good flour for food and local beer and therefore helpful during drought and also thought to be less susceptible to disease (Mtunguja et al. 2014; Akintunde and Obayelu 2016). Bitterness is also thought to be a food security measure since it is avoided by thieves. These findings emphasize the need to incorporate farmer preferences in conservation and breeding strategies in order to improve productivity and sustainable use of cassava genetic resources. 4.3 Production dynamics of cassava local varieties The farmers that participated in the study had been cultivating cassava for not less than 5 years up to 50 years and more. They were therefore believed to be knowledgeable about cassava production dynamics over the years. Most farmers believed that cultivation of cassava local varieties has increased in the past few years (Table 5). The major reasons for increased cassava production in general included: tastiness (144.20%), high yields (165.1%), early maturity (76.10%), disease tolerance (48.10%), good cooking quality (103.9%), marketability (27.5%) and storability (35.10%). Farmers emphasized culinary attributes (taste), high yield and cooking quality as the major reason for variety cultivation and retention. Elias et al. (2000) observed that while farmers generally prefer high yielding varieties, they may preserve lower yielding varieties in parallel with more productive varieties, due to cultural preferences such as taste or cooking quality. In the process, farmers manage the risk of a calamitous crop loss by keeping several different varieties in production at the same time and often in the same field. In northwestern, mid-northern and some parts of eastern Uganda, cassava is mostly processed prior to consumption due to the high cyanogenic compounds in the cultivated varieties (Balyejusa Kizito et al. 2006). In these regions, bitter varieties are considered tastier after processing than the sweet varieties and thus high starch content is a key trait that farmers look for in the varieties cultivated. 123 Local varieties of cassava: conservation, cultivation and… 2443 4.4 Conservation practices undertaken by farmers on the cassava varieties It is not unusual for farmers to exchange stem cuttings with their neighbors and neigh- boring communities, resulting in fields with a mixture of local cassava varieties (Andersson and de Vicente 2010). And it is not common that cassava planting materials for local varieties are sold or bought. Although farmers may not deliberately conserve cassava genetic resources, they do so through traditional practices that ensure on-farm retention of varieties over years. Cassava farmers in Uganda use various practices to ensure retention of varieties on farm. They plant varieties in multiple plots (40.3%), replant immediately after harvesting (84.2%), share with others (21.1%) and use clean planting material (17.4. %). In case planting for some reason does not happen immediately after harvesting, farmers reported that stakes can be kept viable for some time under the shade preferably in an upright position until the next planting. These methods ensure that in case of any catastrophic events, varieties are not lost. With the prevalence of viral diseases, some farmers have learnt to recognize symptoms associated with cassava viral diseases and select planting material from plants that are asymptomatic (Table 7). This strategy not only ensures availability of food and seed for the next planting but also reduces the spread of diseases on farm and within the community. The farmers were commended and encouraged to continue planting disease-free cuttings in order to reduce the spread of diseases. The information generated during this study indicates that farmers in most areas where cassava is grown have more or less similar practices of maintenance and preservation of cassava genetic resources (Balyejusa Kizito et al. 2006; Elias et al. 2001; Mtunguja et al. 2014; Akintunde and Obayelu 2016). However, it was observed during this study that farmers from the study areas are not aware of the scientific importance of conservation of cassava genetic resources rather preserve varieties for the sake of supporting their households’ needs. Therefore, government and development partners should invest in sensitizing farmers about the importance of on-farm conservation of crop genetic resources for future use. 5 Conclusion The information obtained from this study indicates that farmers are still growing cassava local varieties despite the distribution of disease-tolerant and high yielding improved varieties. It is also clear that farmers have preferences that influence the decisions taken to retain or abandon particular varieties. Based on their local knowledge, farmers understand the need to grow a diversity of cassava as this can help in times of scarcity. Although improved varieties have enabled continued cassava production in Uganda and the region, their cultivation and adoption may reduce the number of varieties cultivated by farmers leading to erosion of genetic diversity (Tripp 1996). As the government of Uganda pro- motes research toward cassava improvement, measures should be put in place to ensure protection and sustainable utilization of its genetic resources. Acknowledgements The authors wish to acknowledge technical support from all scientists and technicians from the Root crops program at the National Crops Resources Research Institute who participated in this study and also financial support from East African Agricultural Productivity Project (EAAPP) and the Next Generation Cassava Breeding project. 123 2444 G. Nakabonge et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter- national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. References Akintunde, O. O., & Obayelu, O. A. (2016). Farmers’ perception of on-farm conservation of cassava biodiversity in Ogun State, Nigeria. International Food Research Journal, 23(5), 2265–2270. Alicai, T., Omongo, C., & Maruthi, M. (2007). Re-emergence of cassava brown streak disease in Uganda. Plant Disease, 91, 24–29. Almekinders, C. J. M., Louwaars, N. P., & de Bruijn, G. H. (1994). Local seed systems and their importance for an improved seed supply in developing countries. Euphytica, 78, 207–216. Andersson, M. S., & de Vicente, M. C. (2010). Cassava, manioc, yuca. In M. S. Andersson & M. S. de Vicente (Eds.), Gene flow between crops and their wild relatives (pp. 125–146). Baltimore: Johns Hopkins University Press. Balyejusa Kizito, E. (2006). Genetic and root growth studies in cassava (Manihot esculenta Crantz): Implications for breeding. Doctor’s dissertation. ISSN 1652-6880, ISBN 91-567-7131-1. Balyejusa Kizito, E., Chiwona-Karltun, L., Egwang, T., Fregene, M., & Westerbergh, A. (2007). Genetic diversity and variety composition of cassava on small scale farms in Uganda: An interdisciplinary study using genetic markers and farmer interviews. Genetica, 130, 301–318. Balyejusa Kizito, E., Ro¨nnberg-Wa¨stljung, A.-C., Egwang, T., Gullberg, U., Fregene, M., & Westerbergh, A. (2006). Quantitative trait loci controlling cyanogenic glucoside and dry matter content in cassava (Manihot esculenta Crantz) roots. Hereditas, 144(4), 129–136. Elias, M., McKey, D., Panaud, O., Anstett, M. C., & Thierry, R. (2001). Traditional management of cassava morphological and genetic diversity by the Makushi Amerindians (Guyana, South America): Per- spectives for on-farm conservation of crop genetic resources. Euphytica, 120, 143–157. Elias, M., Panaud, O., & Robert, T. (2000). Assessment of genetic variability in a traditional cassava (Manihot esculenta Crantz) farming system, using AFLP markers. Heredity, 85, 219–230. FAO. (2009). FAO and traditional knowledge: The linkages with sustainability, food security and climate change impacts (pp. 184–185). Rome: FAO. FAO. (2010). The second report on the state of the world’s plant genetic resources for food and agriculture. Rome. Gwali, S., Okullo, J. B. L., Eilu, G., Nakabonge, G., Nyeko, P., & Vuzi, P. (2011). Traditional management and conservation of Shea trees (Vitellaria paradoxa subspecies nilotica) in Uganda. Environment, Development and Sustainability, 14(3), 347–363. Haugerud, A., & Collinson, M. P. (1990). Plants, genes and people: Improving of plant breeding in Africa. Experimental Agriculture, 26(3), 341–362. Hillocks, R. J. (2002). Cassava in Africa. In R. J. Hillocks, J. M. Thresh & A. C. Bellotti (Eds.), Cassava: Biology, production, and utilization (pp. 41–54). Wallingford: CAB International. Jansson, C., Westerbergh, A., Zhang, J., Hu, X., & Sun, C. (2009). Cassava, a potential biofuel crop in (the) People’s Republic of China. Applied Energy, 86, 95–99. Kawuki, R. S., Kaweesi, T., Esuma, E., Pariyo, A., Kayondo, S. I., Ozimati, A., et al. (2016). Eleven years of breeding efforts to combat cassava brown streak disease. Breeding Science Preview, 66(4), 560–571. Langlands, J. (1972). Cassava in Uganda. Uganda Journal, 10, 273–286. Legg, J. P. (1999). Emergence, spread and strategies for controlling the pandemic cassava mosaic virus disease in East and Central Africa. Crop Protection, 18, 627–637. Legg, J. P., & Fauquet, C. M. (2004). Cassava mosaic geminiviruses in Africa. Plant Molecular Biology, 56(4), 585–599. Mehta, P. S., Rathi, R. S., Negi, K. S., & Ojha, S. N. (2009). Farmer’s criteria for naming crop varieties: A case on rice varieties in Kumaon Himalaya of Uttarakhand. Indian Journal of Plant Genetic Resources, 22(3), 215–220. Mtunguja, M. K., Laswai, H. S., Muzanila, Y. C., & Ndunguru, J. (2014). Farmer’s knowledge on selection and conservation of cassava (Manihot esculenta) genetic resources in Tanzania. Journal of Biology, Agriculture and Healthcare, 4(10), 122–129. Nassar, N. M. A. (2000). Cytogenetics and evolution of cassava (Manihot esculenta Crantz). Genetics and Molecular Biology, 23, 1003–1014. 123 Local varieties of cassava: conservation, cultivation and… 2445 Nassar, N. M. A., & Ortiz, R. (2006). Cassava improvement: Challenges and impacts. Journal of Agri- cultural Science, 145, 163–171. Negi, S. C. (2010). Traditional knowledge and biodiversity conservation: Examples from Uttarakhand, Central Himalaya. Mountain Research and Development, 30(3), 259–265. Ng, N. Q., & Ng, S. Y. C. (2002). Genetic resources and conservation. In R. J. Hillocks, J. M. Thresh & A. C. Bellotti (Eds.), Cassava: Biology, production, and utilization (pp. 167–177). Wallingford: CABI Publishing. Nuwamanya, E., Bagumal, Y., Kawuki, R. S., & Rubaihayo, P. R. (2009). Quantification of starch physicochemical characteristics in a cassava segregating population. African Crop Science Journal, 16, 191–202. OECD. (2014). Environment directorate Joint meeting of the chemicals committee and the working party on chemicals, pesticides and biotechnology. Consensus document on the biology of cassava (Manihot esculenta Crantz). Series on Harmonisation of Regulatory Oversight in Biotechnology, No. 57, OECD, Paris. Available on the BioTrack website at (http://www.oecd.org/chemicalsafety/). Okogbenin, E., Porto, M. C. M., Egesi, C., Mba, C., Ospinosa, E., Santos, L. G., et al. (2007). Marker aided introgression of CMD resistance in Latin American germplasm for genetic improvement of cassava in Africa. Crop Science, 47, 1895–1904. Parajuli, D. R., & Das, T. (2013). Indigenous knowledge and biodiversity: Interconnectedness for sus- tainable development. International Journal of Scientific & Technology Research, 2(8), 220–224. Peroni, N., & Hanazaki, N. (2002). Current and lost diversity of cultivated varieties, especially cassava, under swidden cultivation systems in the Brazilian Atlantic forest. Agriculture, Ecosystems & Envi- ronment, 92, 171–183. Tripp, R. (1996). Biodiversity and modern crop varieties: Sharpening the debate. Agriculture and Human Values, 13(4), 48–63. Turyagyenda, L. F., Kizito, E. B., Ferguson, M. E., Baguma, Y., Harvey, J. W., Gibson, P., et al. (2012). Genetic diversity among farmer preferred cassava landraces in Uganda. African Crop Science Journal, 20, 15–30. UBOS. (2010). Crop census and production report. In: Uganda census of Agriculture. Uganda Bureau of Statistics, Ministry of Agriculture, Animal Industry and Fisheries, Entebbe. Wilder, B. T., O’Meara, C., Monti, L., & Nabhan, G. P. (2016). The importance of indigenous knowledge in curbing the loss of language and biodiversity. BioScience, 66(6), 499–509.

Journal

"Environment, Development and Sustainability"Springer Journals

Published: Jun 28, 2017

There are no references for this article.