Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Localization of nitric oxide synthase indicating a neural role for nitric oxide

Localization of nitric oxide synthase indicating a neural role for nitric oxide NITRIC oxide (NO), apparently identical to endothelium-derived relaxing factor in blood vessels1–3, is also formed by cytotoxic macrophages4,5, in adrenal gland6 and in brain tissue7–9, where it mediates the stimulation by glutamate of cyclic GMP formation in the cerebellum10,11. Stimulation of intestinal12 or anococcygeal13–15 nerves liberates NO, and the resultant muscle relaxation is blocked by arginine derivatives that inhibit NO synthesis. It is, however, unclear whether in brain or intestine, NO released following nerve stimulation is formed in neurons, glia, fibroblasts, muscle or blood cells, all of which occur in proximity to neurons and so could account for effects of nerve stimulation on cGMP and muscle tone. We have now localized NO synthase protein immunohisto-chemically in the rat using antisera to the purified enzyme16. We demonstrate NO synthase in the brain to be exclusively associated with discrete neuronal populations. NO synthase is also concentrated in the neural innervation of the posterior pituitary, in autonomic nerve fibres in the retina, in cell bodies and nerve fibres in the myenteric plexus of the intestine, in adrenal medulla, and in vascular endothelial cells. These prominent neural localizations provide the first conclusive evidence for a strong association of NO with neurons. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nature Springer Journals

Localization of nitric oxide synthase indicating a neural role for nitric oxide

Nature , Volume 347 (6295) – Oct 25, 1990

Loading next page...
 
/lp/springer-journals/localization-of-nitric-oxide-synthase-indicating-a-neural-role-for-IQqYqslVPS

References (29)

Publisher
Springer Journals
Copyright
Copyright © Springer Nature Limited 1990
Subject
Science, Humanities and Social Sciences, multidisciplinary; Science, Humanities and Social Sciences, multidisciplinary; Science, multidisciplinary
ISSN
0028-0836
eISSN
1476-4687
DOI
10.1038/347768a0
Publisher site
See Article on Publisher Site

Abstract

NITRIC oxide (NO), apparently identical to endothelium-derived relaxing factor in blood vessels1–3, is also formed by cytotoxic macrophages4,5, in adrenal gland6 and in brain tissue7–9, where it mediates the stimulation by glutamate of cyclic GMP formation in the cerebellum10,11. Stimulation of intestinal12 or anococcygeal13–15 nerves liberates NO, and the resultant muscle relaxation is blocked by arginine derivatives that inhibit NO synthesis. It is, however, unclear whether in brain or intestine, NO released following nerve stimulation is formed in neurons, glia, fibroblasts, muscle or blood cells, all of which occur in proximity to neurons and so could account for effects of nerve stimulation on cGMP and muscle tone. We have now localized NO synthase protein immunohisto-chemically in the rat using antisera to the purified enzyme16. We demonstrate NO synthase in the brain to be exclusively associated with discrete neuronal populations. NO synthase is also concentrated in the neural innervation of the posterior pituitary, in autonomic nerve fibres in the retina, in cell bodies and nerve fibres in the myenteric plexus of the intestine, in adrenal medulla, and in vascular endothelial cells. These prominent neural localizations provide the first conclusive evidence for a strong association of NO with neurons.

Journal

NatureSpringer Journals

Published: Oct 25, 1990

There are no references for this article.