Lossy Image Compression: Tree Triangular Coding Image Compression Algorithms
Shukla, K. K.; Prasad, M. V.
2011-08-27 00:00:00
[This chapter presents four new image compression algorithms namely, Three-triangle decomposition scheme, Six-triangle decomposition scheme, Nine-triangle decomposition scheme and the Delaunay Triangulation Scheme. Performance of these algorithms is evaluated using standard test images. The asymptotic time complexity of Three-, Six-, and Nine-triangle decomposition algorithms is the same: O(nlogn) for coding and θ(n), for decoding. The time complexity of the Delaunay triangulation algorithm is O(n2logn) for coding and O(nlogn) for decoding, where n is the number of pixels in the image.]
http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.pnghttp://www.deepdyve.com/lp/springer-journals/lossy-image-compression-tree-triangular-coding-image-compression-heiH8ZYPZx
[This chapter presents four new image compression algorithms namely, Three-triangle decomposition scheme, Six-triangle decomposition scheme, Nine-triangle decomposition scheme and the Delaunay Triangulation Scheme. Performance of these algorithms is evaluated using standard test images. The asymptotic time complexity of Three-, Six-, and Nine-triangle decomposition algorithms is the same: O(nlogn) for coding and θ(n), for decoding. The time complexity of the Delaunay triangulation algorithm is O(n2logn) for coding and O(nlogn) for decoding, where n is the number of pixels in the image.]
To get new article updates from a journal on your personalized homepage, please log in first, or sign up for a DeepDyve account if you don’t already have one.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.