Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Low-carbon transitions in world regions: comparison of technological mitigation potential and costs in 2020 and 2030 through bottom-up analyses

Low-carbon transitions in world regions: comparison of technological mitigation potential and... This study focuses on low-carbon transitions in the mid-term and analyzes mitigation potentials of greenhouse gas (GHG) emissions in 2020 and 2030 in a comparison based on bottom-up-type models. The study provides in-depth analyses of technological mitigation potentials and costs by sector and analyzes marginal abatement cost (MAC) curves from 0 to 200 US $/tCO2 eq in major countries. An advantage of this study is that the technological feasibility of reducing GHG emissions is identified explicitly through looking at distinct technological options. However, the results of MAC curves using the bottom-up approach vary widely according to region and model due to the various differing assumptions. Thus, this study focuses on some comparable variables in order to analyze the differences between MAC curves. For example, reduction ratios relative to 2005 in Annex I range from 9 % to 31 % and 17 % to 34 % at 50 US $/tCO2 eq in 2020 and 2030, respectively. In China and India, results of GHG emissions relative to 2005 vary very widely due to the difference in baseline emissions as well as the diffusion rate of mitigation technologies. Future portfolios of advanced technologies and energy resources, especially nuclear and renewable energies, are the most prominent reasons for the difference in MAC curves. Transitions toward a low-carbon society are not in line with current trends, and will require drastic GHG reductions, hence it is important to discuss how to overcome various existing barriers such as energy security constraints and technological restrictions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Sustainability Science Springer Journals

Low-carbon transitions in world regions: comparison of technological mitigation potential and costs in 2020 and 2030 through bottom-up analyses

Sustainability Science , Volume 7 (2) – Jun 23, 2012

Loading next page...
 
/lp/springer-journals/low-carbon-transitions-in-world-regions-comparison-of-technological-eAry2eHmTj

References (34)

Publisher
Springer Journals
Copyright
Copyright © 2012 by The Author(s)
Subject
Environment; Environmental Management; Climate Change Management and Policy; Environmental Economics; Landscape Ecology; Sustainable Development; Public Health
ISSN
1862-4065
eISSN
1862-4057
DOI
10.1007/s11625-012-0172-6
Publisher site
See Article on Publisher Site

Abstract

This study focuses on low-carbon transitions in the mid-term and analyzes mitigation potentials of greenhouse gas (GHG) emissions in 2020 and 2030 in a comparison based on bottom-up-type models. The study provides in-depth analyses of technological mitigation potentials and costs by sector and analyzes marginal abatement cost (MAC) curves from 0 to 200 US $/tCO2 eq in major countries. An advantage of this study is that the technological feasibility of reducing GHG emissions is identified explicitly through looking at distinct technological options. However, the results of MAC curves using the bottom-up approach vary widely according to region and model due to the various differing assumptions. Thus, this study focuses on some comparable variables in order to analyze the differences between MAC curves. For example, reduction ratios relative to 2005 in Annex I range from 9 % to 31 % and 17 % to 34 % at 50 US $/tCO2 eq in 2020 and 2030, respectively. In China and India, results of GHG emissions relative to 2005 vary very widely due to the difference in baseline emissions as well as the diffusion rate of mitigation technologies. Future portfolios of advanced technologies and energy resources, especially nuclear and renewable energies, are the most prominent reasons for the difference in MAC curves. Transitions toward a low-carbon society are not in line with current trends, and will require drastic GHG reductions, hence it is important to discuss how to overcome various existing barriers such as energy security constraints and technological restrictions.

Journal

Sustainability ScienceSpringer Journals

Published: Jun 23, 2012

There are no references for this article.