Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Market-Driven Spectrum Sharing in Cognitive RadioTwo-Stage Spectrum Sharing Mechanism

Market-Driven Spectrum Sharing in Cognitive Radio: Two-Stage Spectrum Sharing Mechanism [In this chapter, we consider a more complicated scenario of spectrum sharing with multiple spectrum sellers. In this model, a CR network with multiple heterogeneous POs and SUs is considered. Each PO has a different amount of spectrum to lease in different specific areas, and has a different users’ (PUs’) activity. Each SU has heterogeneous requirements in terms of spectrum demands and attitudes toward POs’ potential spectrum recall. Obviously, in this case, spectrum sharing needs to jointly consider both spectrum allocation and individual strategies. However, solving such a joint optimization problem is challenging due to the facts that (1) PUs’ activities are random and heterogenous among all POs; and (2) before the spectrum allocation has been done, it is impossible to know the quantity of spectrum recalled from each SU. In order to deal with the high computational complexity involved in solving such problem, we introduce a new method called Two-stage resource allocation scheme with combinatorial auction and Stackelberg game in spectrum sharing (TAGS) mechanism [1], which decomposes the solution into two separate stages. In the first stage, a suboptimal spectrum allocation is derived by formulating a combinatorial spectrum auction without considering the potential spectrum recall. Based on the winner determination in the first stage, each PO then decides a maximum amount of spectrum that may be recalled in the second stage, and each winning SU claims a payment reduction so as to offset the risk of utility degradation. Such a decision making process is viewed as a Stackelberg pricing game, and the best strategies for both POs and SUs are figured out accordingly. Theoretical and simulation results demonstrate that TAGS mechanism is efficient in increasing the spectrum utilization and economically feasible for all participants.] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

Market-Driven Spectrum Sharing in Cognitive RadioTwo-Stage Spectrum Sharing Mechanism

Loading next page...
 
/lp/springer-journals/market-driven-spectrum-sharing-in-cognitive-radio-two-stage-spectrum-lrwqqzzynS
Publisher
Springer International Publishing
Copyright
© The Author(s) 2016
ISBN
978-3-319-29690-6
Pages
59 –84
DOI
10.1007/978-3-319-29691-3_4
Publisher site
See Chapter on Publisher Site

Abstract

[In this chapter, we consider a more complicated scenario of spectrum sharing with multiple spectrum sellers. In this model, a CR network with multiple heterogeneous POs and SUs is considered. Each PO has a different amount of spectrum to lease in different specific areas, and has a different users’ (PUs’) activity. Each SU has heterogeneous requirements in terms of spectrum demands and attitudes toward POs’ potential spectrum recall. Obviously, in this case, spectrum sharing needs to jointly consider both spectrum allocation and individual strategies. However, solving such a joint optimization problem is challenging due to the facts that (1) PUs’ activities are random and heterogenous among all POs; and (2) before the spectrum allocation has been done, it is impossible to know the quantity of spectrum recalled from each SU. In order to deal with the high computational complexity involved in solving such problem, we introduce a new method called Two-stage resource allocation scheme with combinatorial auction and Stackelberg game in spectrum sharing (TAGS) mechanism [1], which decomposes the solution into two separate stages. In the first stage, a suboptimal spectrum allocation is derived by formulating a combinatorial spectrum auction without considering the potential spectrum recall. Based on the winner determination in the first stage, each PO then decides a maximum amount of spectrum that may be recalled in the second stage, and each winning SU claims a payment reduction so as to offset the risk of utility degradation. Such a decision making process is viewed as a Stackelberg pricing game, and the best strategies for both POs and SUs are figured out accordingly. Theoretical and simulation results demonstrate that TAGS mechanism is efficient in increasing the spectrum utilization and economically feasible for all participants.]

Published: Mar 9, 2016

Keywords: Nash Equilibrium; Bidding Price; Spectrum Sharing; Spectrum Allocation; Combinatorial Auction

There are no references for this article.