Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
[The purpose of chapter is to discuss plane curves from differential geometric point of view and applications of plane curves to computer aided designs. Plane curves are determined uniquely by curvatures up to Euclidean motions. Thus geometry of plane curves are formulated by the Euclidean motion group SE(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {SE}(2)$$\end{document}. From industrial point of view, other transformation groups are more appropriate for characterizing certain classes of plane curves. For instance, under equiaffine transformation group, conics are characterized as plane curves with constant equiaffine curvatures. Plane curves with monotonous curvature function have been paid much attention in industrial shape design and computer aided geometric design. In this chapter we study plane curves with monotonous curvature function, especially log-aesthetic curves, in terms of similarity transformation group.]
Published: May 22, 2016
Keywords: Transformation group; Log-aesthetic curve; Similarity geometry; Similarity curvature
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.