Access the full text.
Sign up today, get DeepDyve free for 14 days.
Steffen Weißmann, U. Pinkall (2009)
Real-time Interactive Simulation of Smoke Using Discrete Integrable Vortex Filaments
R. Ward (1992)
Discretization of integrable systemsPhysics Letters A, 165
M. Ablowitz, J. Ladik (1977)
On the solution of a class of nonlinear partial di erence equations
H. Hasimoto (1972)
A soliton on a vortex filamentJournal of Fluid Mechanics, 51
T. Hoffmann (1999)
On the equivalence of the discrete nonlinear Schr
T. Hoffmann (2000)
Discrete Hashimoto Surfaces and a Doubly Discrete Smoke-Ring FlowarXiv: Differential Geometry
G. Lamb (1977)
Solitons on moving space curvesJournal of Mathematical Physics, 18
M. Hisakado, M. Wadati (1996)
Moving discrete curve and geometric phasePhysics Letters A, 214
A. Doliwa, P. Santini (1994)
Integrable dynamics of a discrete curve and the Ablowitz–Ladik hierarchyJournal of Mathematical Physics, 36
Y. Fukumoto, T. Miyazaki (1986)
N-Solitons on a Curved Vortex FilamentJournal of the Physical Society of Japan, 55
J. Inoguchi, K. Kajiwara, N. Matsuura, Y. Ohta (2014)
Discrete Isoperimetric Deformation of Discrete Curves
N. Matsuura (2011)
Discrete KdV and Discrete Modified KdV Equations Arising from Motions of Planar Discrete CurvesInternational Mathematics Research Notices, 2012
J. Inoguchi, K. Kajiwara, N. Matsuura, Y. Ohta (2013)
Discrete mKdV and discrete sine-Gordon flows on discrete space curvesJournal of Physics A: Mathematical and Theoretical, 47
U. Pinkall, Boris Springborn, Steffen Weißmann (2007)
A new doubly discrete analogue of smoke ring flow and the real time simulation of fluid flowJournal of Physics A: Mathematical and Theoretical, 40
K. Nakayama (2007)
Elementary Vortex Filament Model of the Discrete Nonlinear Schrödinger EquationJournal of the Physical Society of Japan, 76
J. Inoguchi, K. Kajiwara, N. Matsuura, Y. Ohta (2010)
Motion and B\"acklund Transformations of Discrete Plane CurvesarXiv: Exactly Solvable and Integrable Systems
(1992)
Integrability and the motions of curves
J. Inoguchi, K. Kajiwara, N. Matsuura, Y. Ohta (2014)
Discrete Models of Isoperimetric Deformation of Plane Curves
M. Ablowitz, J. Ladik (1976)
A Nonlinear Difference Scheme and Inverse ScatteringStudies in Applied Mathematics, 55
A. Doliwa, P. Santini (1996)
The integrable dynamics of a discrete curve
Nakayama, Ségur, Wadati (1992)
Integrability and the motion of curves.Physical review letters, 69 18
[The local induction equation, or the binormal flow on space curves is a well-known model of deformation of space curves as it describes the dynamics of vortex filaments, and the complex curvature is governed by the nonlinear Schrödinger equation (NLS). In this paper, we present its discrete analogue, namely, a model of deformation of discrete space curves by the discrete nonlinear Schrödinger equation (dNLS). We also present explicit formulas for both NLS and dNLS flows in terms of the τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}functionτ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tau $$ \end{document} function of the 2-component KP hierarchy.]
Published: May 22, 2016
Keywords: Discrete space curve; Vortex filamant; Local induction equation; Discrete nonlinear Schrödinger equation; Soliton; τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} function
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.