Access the full text.
Sign up today, get DeepDyve free for 14 days.
I. Schubert, U. Zimmermann (1985)
One-parametric bottleneck transportation problemsAnnals of Operations Research, 4
N. Megiddo (1978)
Combinatorial optimization with rational objective functionsProceedings of the tenth annual ACM symposium on Theory of computing
C. Bazgan, Arne Herzel, Stefan Ruzika, Clemens Thielen, D. Vanderpooten (2020)
An approximation algorithm for a general class of parametric optimization problemsJournal of Combinatorial Optimization, 43
M. Scutellá (2007)
A note on the parametric maximum flow problem and some related reoptimization issuesAnnals of Operations Research, 150
N. Young, R. Tarjan, J. Orlin (1991)
Faster parametric shortest path and minimum-balance algorithmsNetworks, 21
A. Giudici, Pascal Halffmann, Stefan Ruzika, Clemens Thielen (2017)
Approximation schemes for the parametric knapsack problemInf. Process. Lett., 120
AnFPTAS for the knapsack problemwith parametricweights
K Mulmuley, P Shah (2001)
A lower bound for the shortest path problemJ Comput Syst Sci, 63
Patricia Carstensen (1983)
Complexity of some parametric integer and network programming problemsMathematical Programming, 26
G. Gallo, M. Grigoriadis, R. Tarjan (1989)
A Fast Parametric Maximum Flow Algorithm and ApplicationsSIAM J. Comput., 18
K. Murty (1980)
Computational complexity of parametric linear programmingMathematical Programming, 19
G. Ruhe (1988)
Complexity results for multicriterial and parametric network flows using a pathological graph of ZadehZeitschrift für Operations Research, 32
U. Zimmermann, I. Schubert (1985)
Nonlinear one-parametric bottleneck linear programmingZeitschrift für Operations Research, 29
N Megiddo (1979)
Combinatorial optimization with rational objective functionsMath Oper Res, 4
Elisabeth Gassner, Bettina Klinz (2010)
A fast parametric assignment algorithm with applications in max‐algebraNetworks, 55
Patricia Carstensen (1983)
The complexity of some problems in parametric linear and combinatorial programming
David Johnson, W. Freeman
The Np-completeness Column: an Ongoing Guide Garey and Myself in Our Book ''computers and Intractability: a Guide to the Theory of Np-completeness,''
Michael Holzhauser, S. Krumke (2017)
An FPTAS for the parametric knapsack problemArXiv, abs/1701.07822
T. Gal (1994)
Postoptimal Analyses, Parametric Programming, and Related Topics: Degeneracy, Multicriteria Decision Making, Redundancy
David Fernández-Baca, G. Slutzki, D. Eppstein (1996)
Using Sparsification for Parametric Minimum Spanning Tree Problems
P. Agarwal, D. Eppstein, L. Guibas, M. Henzinger (1998)
Parametric and kinetic minimum spanning treesProceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)
J. Yates, W. Orlikowski, Kazuo Okamura, S. McCormick (1996)
Fast algorithms for parametric scheduling come from extensions to parametric maximum flowOper. Res., 47
M. Eben-Chaime (1996)
Parametric solution for linear bicriteria knapsack modelsManagement Science, 42
R. Karp, J. Orlin (1981)
Parametric shortest path algorithms with an application to cyclic staffingDiscret. Appl. Math., 3
K. Mulmuley, P. Shah (2000)
A lower bound for the shortest path problemProceedings 15th Annual IEEE Conference on Computational Complexity
T Arai, S Ueno, Y Kajitani (1993)
Generalization of a theorem on the parametric maximum flow problemDiscret Appl Math, 41
Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations
Max–max, max–min, min–max and min–min optimization problems with a knapsack-type constraint containing a single numerical parameter are studied. The goal is to present optimal solutions for all possible values of the parameter. Algorithms with O(nlogn)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$O(n\log n)$$\end{document} and O(n2)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$O(n^2)$$\end{document} running times are proposed for the problems with a fixed parameter and for the general problem, respectively, where n is the number of items to be packed into the knapsack. The latter algorithm determines optimal solution values for all values of the parameter in O(nlog2n)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$O(n\log ^2 n)$$\end{document} time. The problem of deciding whether there exists a single optimal solution for all values of the numerical parameter is proved to be NP-complete.
4OR – Springer Journals
Published: Jun 1, 2023
Keywords: Knapsack problems; Parametric optimization; Polynomial algorithm; FPTAS; 90C31; 68Q25; 68Q17; 90C59
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.