Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

MCC: a Multiple Consensus Clustering Framework

MCC: a Multiple Consensus Clustering Framework Consensus clustering has emerged as an important extension of the classical clustering problem. Given a set of input clusterings of a given dataset, consensus clustering aims to find a single final clustering which is a better fit in some sense than the existing clusterings. There is a significant drawback in generating a single consensus clustering since different input clusterings could differ significantly. In this paper, we develop a new framework, called Multiple Consensus Clustering (MCC), to explore multiple clustering views of a given dataset from a set of input clusterings. Instead of generating a single consensus, we propose two sets of approaches to obtain multiple consensus. One employs the meta clustering method, and the other uses a hierarchical tree structure and further applies a dynamic programming algorithm to generate a flat partition from the hierarchical tree using the modularity measure. Multiple consensuses are finally obtained by applying consensus clustering algorithms to each cluster of the partition. Extensive experimental results on 11 real-world datasets and a case study on a Protein-Protein Interaction (PPI) dataset demonstrate the effectiveness of the MCC framework. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Classification Springer Journals

MCC: a Multiple Consensus Clustering Framework

Loading next page...
 
/lp/springer-journals/mcc-a-multiple-consensus-clustering-framework-3uQ5VOnqU3

References (45)

Publisher
Springer Journals
Copyright
Copyright © 2019 by The Classification Society
Subject
Statistics; Statistical Theory and Methods; Pattern Recognition; Bioinformatics; Signal,Image and Speech Processing; Psychometrics; Marketing
ISSN
0176-4268
eISSN
1432-1343
DOI
10.1007/s00357-019-09318-4
Publisher site
See Article on Publisher Site

Abstract

Consensus clustering has emerged as an important extension of the classical clustering problem. Given a set of input clusterings of a given dataset, consensus clustering aims to find a single final clustering which is a better fit in some sense than the existing clusterings. There is a significant drawback in generating a single consensus clustering since different input clusterings could differ significantly. In this paper, we develop a new framework, called Multiple Consensus Clustering (MCC), to explore multiple clustering views of a given dataset from a set of input clusterings. Instead of generating a single consensus, we propose two sets of approaches to obtain multiple consensus. One employs the meta clustering method, and the other uses a hierarchical tree structure and further applies a dynamic programming algorithm to generate a flat partition from the hierarchical tree using the modularity measure. Multiple consensuses are finally obtained by applying consensus clustering algorithms to each cluster of the partition. Extensive experimental results on 11 real-world datasets and a case study on a Protein-Protein Interaction (PPI) dataset demonstrate the effectiveness of the MCC framework.

Journal

Journal of ClassificationSpringer Journals

Published: Aug 9, 2019

There are no references for this article.