Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Mineralogical, Petrographic, and Physical Investigations on Fossiliferous Middle Jurassic Sandstones from Central Sardinia (Italy) to Define Their Alteration and Experimental Consolidation

Mineralogical, Petrographic, and Physical Investigations on Fossiliferous Middle Jurassic... In the present work, the mineralogical-petrographic and physical features of Middle Jurassic sandstones with macrofossil plant remains belonging to the Domenico Lovisato collection, housed at the Geological and Palaeontological Museum of the Cagliari University (Sardinia, Italy), have been studied to define the alteration processes and the consolidating treatment. These sandstones, coming from the Genna Selole formation (central Sardinia), show evident problems of physical decay, due to petrophysical and compositional characteristics such as high porosity, low cementing degree, and presence of clay minerals (e.g., phyllosilicates). This latter leads to subsequent cyclic mechanisms of hydration/dehydration, which affect these sedimentary rocks. For this purpose, five main different sandstone specimens with evident crystalline matrix decohesion have been selected and analyzed. To define their mineralogical-petrographic (composition, microstructure) and physical characteristics (real and bulk densities, helium porosity, water absorption, mechanical strength, etc.), the optical microscope (OM) in polarized light, X-ray powder diffraction analysis (XRPD), helium and water pycnometer, and point load test were used. Testing the most suitable and compatible products for consolidation and time-saving of the palaeobotanical remains, several experimental treatment tests have been performed using four chemical products (i.e., alkoxysilane ethyl silicates and Na/K-silicate). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Geoheritage Springer Journals

Mineralogical, Petrographic, and Physical Investigations on Fossiliferous Middle Jurassic Sandstones from Central Sardinia (Italy) to Define Their Alteration and Experimental Consolidation

Loading next page...
 
/lp/springer-journals/mineralogical-petrographic-and-physical-investigations-on-4GftX0UCf1

References (96)

Publisher
Springer Journals
Copyright
Copyright © 2018 by The European Association for Conservation of the Geological Heritage
Subject
Earth Sciences; Historical Geology; Physical Geography; Biogeosciences; Paleontology; Landscape/Regional and Urban Planning; Mineralogy
ISSN
1867-2477
eISSN
1867-2485
DOI
10.1007/s12371-018-0326-8
Publisher site
See Article on Publisher Site

Abstract

In the present work, the mineralogical-petrographic and physical features of Middle Jurassic sandstones with macrofossil plant remains belonging to the Domenico Lovisato collection, housed at the Geological and Palaeontological Museum of the Cagliari University (Sardinia, Italy), have been studied to define the alteration processes and the consolidating treatment. These sandstones, coming from the Genna Selole formation (central Sardinia), show evident problems of physical decay, due to petrophysical and compositional characteristics such as high porosity, low cementing degree, and presence of clay minerals (e.g., phyllosilicates). This latter leads to subsequent cyclic mechanisms of hydration/dehydration, which affect these sedimentary rocks. For this purpose, five main different sandstone specimens with evident crystalline matrix decohesion have been selected and analyzed. To define their mineralogical-petrographic (composition, microstructure) and physical characteristics (real and bulk densities, helium porosity, water absorption, mechanical strength, etc.), the optical microscope (OM) in polarized light, X-ray powder diffraction analysis (XRPD), helium and water pycnometer, and point load test were used. Testing the most suitable and compatible products for consolidation and time-saving of the palaeobotanical remains, several experimental treatment tests have been performed using four chemical products (i.e., alkoxysilane ethyl silicates and Na/K-silicate).

Journal

GeoheritageSpringer Journals

Published: Sep 20, 2018

There are no references for this article.