Access the full text.
Sign up today, get DeepDyve free for 14 days.
M. Dietze, A. Sala, M. Carbone, C. Czimczik, J. Mantooth, A. Richardson, R. Vargas (2014)
Nonstructural carbon in woody plants.Annual review of plant biology, 65
A. Walker, S. Zaehle, B. Medlyn, M. Kauwe, S. Asao, T. Hickler, W. Parton, D. Ricciuto, Ying‐ping Wang, D. Wårlind, R. Norby (2015)
Predicting long‐term carbon sequestration in response to CO2 enrichment: How and why do current ecosystem models differ?Global Biogeochemical Cycles, 29
L. Cernusak, K. Winter, J. Dalling, J. Holtum, C. Jaramillo, C. Körner, A. Leakey, R. Norby, B. Poulter, Benjamin Turner, S. Wright (2013)
Tropical forest responses to increasing atmospheric CO2: current knowledge and opportunities for future research.Functional plant biology : FPB, 40 6
D. Wårlind, Benjamin Smith, T. Hickler, A. Arneth (2014)
Nitrogen feedbacks increase future terrestrial ecosystem carbon uptake in an individual-based dynamic vegetation modelBiogeosciences, 11
R. Nowak, D. Ellsworth, Stanley Smith (2004)
Functional responses of plants to elevated atmospheric CO2– do photosynthetic and productivity data from FACE experiments support early predictions?New Phytologist, 162
R. Norby, P. Hanson, E. O'neill, T. Tschaplinski, J. Weltzin, R. Hansen, W. Cheng, S. Wullschleger, C. Gunderson, N. Edwards, Dale Johnson (2002)
Net primary productivity of a CO2-enriched deciduous forest and the implications for carbon storageEcological Applications, 12
R. Norby, S. Wullschleger, C. Gunderson, Dale Johnson, R. Ceulemans (1999)
Tree responses to rising CO2 in field experiments: implications for the future forestPlant Cell and Environment, 22
S. Scheiter, S. Higgins, J. Beringer, L. Hutley (2015)
Climate change and long-term fire management impacts on Australian savannas.The New phytologist, 205 3
T. Hickler, Benjamin Smith, I. Prentice, Kristina Mjöfors, P. Miller, A. Arneth, M. Sykes (2008)
CO2 fertilization in temperate FACE experiments not representative of boreal and tropical forestsGlobal Change Biology, 14
M. Kauwe, B. Medlyn, S. Zaehle, A. Walker, M. Dietze, Ying‐ping Wang, Yiqi Luo, Atul Jain, B. El-Masri, T. Hickler, D. Wårlind, Ensheng Weng, W. Parton, P. Thornton, Shusen Wang, I. Prentice, S. Asao, Benjamin Smith, H. McCarthy, C. Iversen, P. Hanson, J. Warren, R. Oren, R. Norby (2014)
Where does the carbon go? A model–data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest free-air CO2 enrichment sitesThe New Phytologist, 203
H. McCarthy, R. Oren, K. Johnsen, A. Gallet‐Budynek, S. Pritchard, Charles Cook, S. LaDeau, R. Jackson, A. Finzi (2010)
Re-assessment of plant carbon dynamics at the Duke free-air CO(2) enrichment site: interactions of atmospheric [CO(2)] with nitrogen and water availability over stand development.The New phytologist, 185 2
M. Kirschbaum, B. Medlyn, D. King, S. Pongracic, D. Murty, H. Keith, P. Khanna, P. Snowdon, R. Raison (1998)
Modelling forest‐growth response to increasing CO2 concentration in relation to various factors affecting nutrient supplyGlobal Change Biology, 4
P. Vitousek, S. Porder, B. Houlton, O. Chadwick (2010)
Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions.Ecological applications : a publication of the Ecological Society of America, 20 1
S. Sitch, C. Huntingford, N. Gedney, P. Levy, M. Lomas, S. Piao, R. Betts, P. Ciais, P. Cox, P. Friedlingstein, C. Jones, I. Prentice, F. Woodward (2008)
Evaluation of the terrestrial carbon cycle, future plant geography and climate‐carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs)Global Change Biology, 14
R. Oren, D. Ellsworth, K. Johnsen, N. Phillips, B. Ewers, C. Maier, K. Schäfer, H. McCarthy, G. Hendrey, S. McNulty, G. Katul (2001)
Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphereNature, 411
A. Rammig, T. Jupp, K. Thonicke, B. Tietjen, J. Heinke, S. Ostberg, W. Lucht, W. Cramer, P. Cox (2010)
Estimating the risk of Amazonian forest dieback.The New phytologist, 187 3
P. Sleen, P. Groenendijk, M. Vlam, N. Anten, A. Boom, F. Bongers, T. Pons, G. Terburg, P. Zuidema (2015)
No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increasedNature Geoscience, 8
T. Rötzer, R. Grote, H. Pretzsch (2005)
Effects of environmental changes on the vitality of forest standsEuropean Journal of Forest Research, 124
C. Huntingford, P. Harris, N. Gedney, P. Cox, R. Betts, J. Marengo, J. Gash (2004)
Using a GCM analogue model to investigate the potential for Amazonian forest diebackTheoretical and Applied Climatology, 78
E. Wiley, B. Helliker (2012)
A re-evaluation of carbon storage in trees lends greater support for carbon limitation to growth.The New phytologist, 195 2
A. Leakey, E. Ainsworth, C. Bernacchi, A. Rogers, S. Long, D. Ort (2009)
Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE.Journal of experimental botany, 60 10
J. Davenport, R. McCarty, L. J., Arana, R. Ravizzini, M. A., Viale, S. Selman-Reimer, W. Frasch (1987)
Progress in Photosynthesis Research
P. Thornton, N. Rosenbloom (2005)
Ecosystem model spin-up: Estimating steady state conditions in a coupled terrestrial carbon and nitrogen cycle modelEcological Modelling, 189
J. Canadell, D. Pataki, L. Pitelka (2007)
Terrestrial Ecosystems in a Changing World
A. Finzi, R. Norby, C. Calfapietra, A. Gallet‐Budynek, B. Gielen, W. Holmes, M. Hoosbeek, C. Iversen, R. Jackson, M. Kubiske, Joanne Ledford, M. Liberloo, R. Oren, A. Polle, S. Pritchard, D. Zak, W. Schlesinger, R. Ceulemans (2007)
Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2Proceedings of the National Academy of Sciences, 104
Xiaojuan Yang, P. Thornton, D. Ricciuto, W. Post (2013)
The role of phosphorus dynamics in tropical forests – a modeling study using CLM-CNPBiogeosciences, 11
D. Galbraith, P. Levy, S. Sitch, C. Huntingford, P. Cox, M. Williams, P. Meir (2010)
Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change.The New phytologist, 187 3
C. Körner, R. Asshoff, Olivier Bignucolo, S. Hättenschwiler, S. Keel, S. Peláez-Riedl, S. Pepin, R. Siegwolf, G. Zotz (2005)
Carbon Flux and Growth in Mature Deciduous Forest Trees Exposed to Elevated CO2Science, 309
P. Cox, R. Betts, C. Jones, S. Spall, I. Totterdell (2000)
Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate modelNature, 408
S. McMahon, G. Parker, Dawn Miller (2010)
Evidence for a recent increase in forest growthProceedings of the National Academy of Sciences, 107
S. Zaehle (2013)
Terrestrial nitrogen–carbon cycle interactions at the global scalePhilosophical Transactions of the Royal Society B: Biological Sciences, 368
Benjamin Smith, I. Prentice, M. Sykes (2008)
Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate spaceGlobal Ecology and Biogeography, 10
K. Kostiainen, S. Kaakinen, P. Saranpää, B. Sigurdsson, S. Lundqvist, S. Linder, E. Vapaavuori (2009)
Stem wood properties of mature Norway spruce after 3 years of continuous exposure to elevated [CO2] and temperatureGlobal Change Biology, 15
G. Farquhar, S. Caemmerer, J. Berry (1980)
A biochemical model of photosynthetic CO2 assimilation in leaves of C3 speciesPlanta, 149
P. Cox, R. Betts, M. Collins, P. Harris, C. Huntingford, C. Jones (2004)
Amazonian forest dieback under climate-carbon cycle projections for the 21st centuryTheoretical and Applied Climatology, 78
G. Hendrey, D. Ellsworth, K. Lewin, J. Nagy (1999)
A free‐air enrichment system for exposing tall forest vegetation to elevated atmospheric CO2Global Change Biology, 5
S. Sitch, Benjamin Smith, I. Prentice, A. Arneth, A. Bondeau, W. Cramer, J. Kaplan, S. Levis, W. Lucht, M. Sykes, K. Thonicke, S. Venevsky (2003)
Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation modelGlobal Change Biology, 9
Yude Pan, R. Birdsey, J. Hom, K. McCullough (2009)
Separating effects of changes in atmospheric composition, climate and land-use on carbon sequestration of U.S. Mid-Atlantic temperate forestsForest Ecology and Management, 259
B. Medlyn, C. Barton, M. Broadmeadow, R. Ceulemans, P. Angelis, M. Forstreuter, Michael Freeman, S. Jackson, S. Kellomäki, E. Laitat, A. Rey, P. Roberntz, B. Sigurdsson, J. Strassemeyer, K. Wang, P. Curtis, P. Jarvis (2001)
Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis.The New phytologist, 149 2
W. Parton, D. Schimel, C. Cole, D. Ojima (1987)
Analysis of factors controlling soil organic matter levels in Great Plains grasslandsSoil Science Society of America Journal, 51
C. Körner, J. Morgan, R. Norby (2007)
CO2 Fertilization: When, Where, How Much?
C. Körner (2006)
Plant CO2 responses: an issue of definition, time and resource supply.The New phytologist, 172 3
J. Peñuelas, J. Canadell, R. Ogaya (2011)
Increased water‐use efficiency during the 20th century did not translate into enhanced tree growthGlobal Ecology and Biogeography, 20
H. Bugmann, A. Solomon (2000)
EXPLAINING FOREST COMPOSITION AND BIOMASS ACROSS MULTIPLE BIOGEOGRAPHICAL REGIONSEcological Applications, 10
Yude Pan, J. Melillo, A. McGuire, D. Kicklighter, L. Pitelka, K. Hibbard, L. Pierce, S. Running, D. Ojima, W. Parton, D. Schimel, Other members (1998)
Modeled responses of terrestrial ecosystems to elevated atmospheric CO2: a comparison of simulations by the biogeochemistry models of the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP)Oecologia, 114
Benjamin Smith, D. Wårlind, A. Arneth, T. Hickler, P. Leadley, J. Siltberg, S. Zaehle (2013)
Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation modelBiogeosciences, 11
M. Carbone, C. Czimczik, T. Keenan, P. Murakami, N. Pederson, P. Schaberg, Xiaomei Xu, A. Richardson (2013)
Age, allocation and availability of nonstructural carbon in mature red maple trees.The New phytologist, 200 4
S. Higgins, S. Scheiter (2012)
Atmospheric CO2 forces abrupt vegetation shifts locally, but not globallyNature, 488
A. Sala, D. Woodruff, F. Meinzer (2012)
Carbon dynamics in trees: feast or famine?Tree physiology, 32 6
E. Peters, Kirk Wythers, Shuxia Zhang, J. Bradford, P. Reich (2013)
Potential climate change impacts on temperate forest ecosystem processesCanadian Journal of Forest Research, 43
D. Goll, V. Brovkin, B. Parida, C. Reick, J. Kattge, P. Reich, P. Bodegom, Ü. Niinemets (2012)
Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cyclingBiogeosciences, 9
A. Sokolov, D. Kicklighter, J. Melillo, B. Felzer, A. Schlosser, T. Cronin, Henry Jacoby, R. Prinn (2008)
Consequences of Considering Carbon–Nitrogen Interactions on the Feedbacks between Climate and the Terrestrial Carbon CycleJournal of Climate, 21
S. Leuzinger, Corina Manusch, H. Bugmann, A. Wolf (2013)
A sink‐limited growth model improves biomass estimation along boreal and alpine tree linesGlobal Ecology and Biogeography, 22
J. Tollefson (2013)
Experiment aims to steep rainforest in carbon dioxideNature, 496
J. Ball, I. Woodrow, J. Berry (1987)
A Model Predicting Stomatal Conductance and its Contribution to the Control of Photosynthesis under Different Environmental Conditions
P. Lasch, F. Badeck, F. Suckow, M. Lindner, Peter Mohr (2005)
Model-based analysis of management alternatives at stand and regional level in Brandenburg (Germany)Forest Ecology and Management, 207
Stuart Chapin, P. Matson, Harold Mooney, Melissa Chapin (2002)
Principles of Terrestrial Ecosystem Ecology
G. Farquhar, S. Caemmerer (1982)
Modelling of Photosynthetic Response to Environmental Conditions
M. Kirschbaum, M. Watt, A. Tait, A. Ausseil (2012)
Future wood productivity of Pinus radiata in New Zealand under expected climatic changesGlobal Change Biology, 18
C. Quesada, O. Phillips, M. Schwarz, C. Czimczik, T. Baker, S. Patiño, N. Fyllas, M. Hodnett, R. Herrera, S. Almeida, E. Dávila, A. Arneth, L. Arroyo, Kuo‐Jung Chao, N. Dezzeo, T. Erwin, A. Fiore, N. Higuchi, E. Coronado, E. Jimenez, T. Killeen, A. Lezama, G. Lloyd, G. Lopez-Gonzalez, F. Luizão, Y. Malhi, A. Monteagudo, D. Neill, P. Vargas, R. Paiva, J. Peacock, M. Peñuela, A. Cruz, N. Pitman, N. Filho, A. Prieto, H. Ramírez, A. Rudas, R. Salomão, A. Santos, J. Schmerler, N. Silva, M. Silveira, R. Vasquez, I. Vieira, J. Terborgh, J. Lloyd (2012)
Basin-wide variations in Amazon forest structure and function are mediated by both soils and climateBiogeosciences, 9
H. Pretzsch, P. Biber, G. Schütze, E. Uhl, T. Rötzer (2014)
Forest stand growth dynamics in Central Europe have accelerated since 1870Nature Communications, 5
S. Ollinger, J. Aber, P. Reich, R. Freuder (2002)
Interactive effects of nitrogen deposition, tropospheric ozone, elevated CO2 and land use history on the carbon dynamics of northern hardwood forestsGlobal Change Biology, 8
S. Fatichi, S. Leuzinger, C. Körner (2014)
Moving beyond photosynthesis: from carbon source to sink-driven vegetation modeling.The New phytologist, 201 4
S. Scheiter, S. Higgins (2009)
Impacts of climate change on the vegetation of Africa: an adaptive dynamic vegetation modelling approachGlobal Change Biology, 15
C. Körner (2003)
Carbon limitation in treesJournal of Ecology, 91
S. Zaehle, S. Zaehle, A. Friend (2010)
Carbon and nitrogen cycle dynamics in the O‐CN land surface model: 1. Model description, site‐scale evaluation, and sensitivity to parameter estimatesGlobal Biogeochemical Cycles, 24
S. Leuzinger, M. Bader (2012)
Experimental vs. modeled water use in mature Norway spruce (Picea abies) exposed to elevated CO2Frontiers in Plant Science, 3
M. Kauwe, B. Medlyn, S. Zaehle, A. Walker, M. Dietze, T. Hickler, Atul Jain, Yiqi Luo, W. Parton, I. Prentice, Benjamin Smith, P. Thornton, Shusen Wang, Ying‐ping Wang, D. Wårlind, Ensheng Weng, K. Crous, D. Ellsworth, P. Hanson, Hyun Kim, J. Warren, R. Oren, R. Norby (2013)
Forest water use and water use efficiency at elevated CO2: a model‐data intercomparison at two contrasting temperate forest FACE sitesGlobal Change Biology, 19
E. Ainsworth, S. Long
Review Tansley Review
K. Crous, M. Walters, D. Ellsworth (2008)
Elevated CO(2) concentration affects leaf photosynthesis-nitrogen relationships in Pinus taeda over nine years in FACE.Tree physiology, 28 4
J. Settele, R. Scholes, R. Betts, S. Bunn, P. Leadley, D. Nepstad, J. Overpeck, M. Taboada, R. Adrian, C. Allen, W. Anderegg, C. Bellard, P. Brando, L. Chini, F. Courchamp, W. Foden, D. Gerten, S. Goetz, N. Golding, P. Gonzalez, E. Hawkins, T. Hickler, G. Hurtt, C. Koven, J. Lawler, H. Lischke, G. Mace, M. McGeoch, C. Parmesan, R. Pearson, B. Rodríguez-Labajos, C. Rondinini, R. Shaw, S. Sitch, K. Tockner, P. Visconti, M. Winter (2014)
Terrestrial and Inland Water Systems, 1
R. Norby, J. Warren, C. Iversen, B. Medlyn, R. McMurtrie (2009)
CO2 enhancement of forest productivity constrained by limited nitrogen availabilityProceedings of the National Academy of Sciences, 107
S. Long, E. Ainsworth, A. Rogers, D. Ort (2004)
Rising atmospheric carbon dioxide: plants FACE the future.Annual review of plant biology, 55
M. Dawes, S. Hättenschwiler, P. Bebi, F. Hagedorn, I. Handa, C. Körner, C. Rixen (2010)
Species‐specific tree growth responses to 9 years of CO2 enrichment at the alpine treelineJournal of Ecology, 99
H. Comins, R. McMurtrie (1993)
Long-Term Response of Nutrient-Limited Forests to CO"2 Enrichment; Equilibrium Behavior of Plant-Soil Models.Ecological applications : a publication of the Ecological Society of America, 3 4
C. Körner (2013)
Growth controls photosynthesis - mostly
K. Taylor, R. Stouffer, G. Meehl (2012)
An overview of CMIP5 and the experiment designBulletin of the American Meteorological Society, 93
E. Ainsworth, S. Long (2004)
What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2.The New phytologist, 165 2
David LeBauer, K. Treseder (2008)
Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed.Ecology, 89 2
A. Walker, P. Hanson, M. Kauwe, B. Medlyn, S. Zaehle, S. Asao, M. Dietze, T. Hickler, C. Huntingford, C. Iversen, Atul Jain, M. Lomas, Yiqi Luo, H. McCarthy, W. Parton, I. Prentice, P. Thornton, Shusen Wang, Ying‐ping Wang, D. Wårlind, Ensheng Weng, J. Warren, F. Woodward, R. Oren, R. Norby (2014)
Comprehensive ecosystem model‐data synthesis using multiple data sets at two temperate forest free‐air CO2 enrichment experiments: Model performance at ambient CO2 concentrationJournal of Geophysical Research: Biogeosciences, 119
C. Huntingford, P. Zelazowski, D. Galbraith, L. Mercado, S. Sitch, R. Fisher, M. Lomas, A. Walker, C. Jones, B. Booth, Y. Malhi, D. Hemming, G. Kay, P. Good, S. Lewis, O. Phillips, O. Atkin, J. Lloyd, E. Gloor, J. Zaragoza‐Castells, P. Meir, R. Betts, P. Harris, C. Nobre, J. Marengo, P. Cox (2013)
Simulated resilience of tropical rainforests to CO2-induced climate changeNature Geoscience, 6
G. Bonan (2008)
Carbon cycle: Fertilizing changeNature Geoscience, 1
F. Woodward, C. Kelly (1995)
The influence of CO2 concentration on stomatal densityNew Phytologist, 131
R. Norby, E. DeLucia, B. Gielen, C. Calfapietra, C. Giardina, J. King, Joanne Ledford, H. McCarthy, D. Moore, R. Ceulemans, P. Angelis, A. Finzi, D. Karnosky, M. Kubiske, M. Lukac, K. Pregitzer, G. Scarascia-Mugnozza, W. Schlesinger, R. Oren (2005)
Forest response to elevated CO2 is conserved across a broad range of productivity.Proceedings of the National Academy of Sciences of the United States of America, 102 50
T. Hickler, K. Vohland, J. Feehan, P. Miller, Benjamin Smith, Luis Costa, T. Giesecke, S. Fronzek, T. Carter, W. Cramer, I. Kühn, M. Sykes (2012)
Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species-based dynamic vegetation modelGlobal Ecology and Biogeography, 21
K. R, E. N, P. E, R. H
Modelling respiration of vegetation : evidence for a general temperature-dependent
H. Bugmann, C. Bigler (2011)
Will the CO2 fertilization effect in forests be offset by reduced tree longevity?Oecologia, 165
Dale Johnson, W. Cheng, J. Joslin, R. Norby, N. Edwards, D. Todd (2004)
Effects of elevated CO2 on nutrient cycling in a sweetgum plantationBiogeochemistry, 69
S. Long (1991)
Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: Has its importance been underestimated?Plant Cell and Environment, 14
E. Rastetter, R. McKane, G. Shaver, J. Melillo (1992)
Changes in C storage by terrestrial ecosystems: How C-N interactions restrict responses to CO2 and temperatureWater, Air, and Soil Pollution, 64
S. Zaehle, B. Medlyn, M. Kauwe, A. Walker, M. Dietze, T. Hickler, Yiqi Luo, Ying‐ping Wang, B. El-Masri, P. Thornton, Atul Jain, Shusen Wang, D. Wårlind, Ensheng Weng, W. Parton, C. Iversen, A. Gallet‐Budynek, H. McCarthy, A. Finzi, P. Hanson, I. Prentice, R. Oren, R. Norby (2014)
Evaluation of 11 terrestrial carbon–nitrogen cycle models against observations from two temperate Free-Air CO2 Enrichment studiesThe New Phytologist, 202
M. Kirschbaum, G. Farquhar (1984)
Temperature dependence of whole-leaf photosynthesis in Eucalyptus pauciflora Sieb
S. Schaphoff, U. Heyder, S. Ostberg, D. Gerten, J. Heinke, W. Lucht (2013)
Contribution of permafrost soils to the global carbon budgetEnvironmental Research Letters, 8
O. Lange, P. Nobel, C. Osmond, H. Ziegler (2011)
Encyclopedia of plant physiology. New series. Volume 12B. Physiological plant ecology II. Water relations and carbon assimilation.
B. Drake, M. Gonzalez-Meler, S. Long (1997)
MORE EFFICIENT PLANTS: A Consequence of Rising Atmospheric CO2?Annual review of plant physiology and plant molecular biology, 48
Yude Pan, R. Birdsey, Jingyun Fang, Jingyun Fang, R. Houghton, P. Kauppi, W. Kurz, O. Phillips, A. Shvidenko, S. Lewis, J. Canadell, P. Ciais, R. Jackson, S. Pacala, A. McGuire, S. Piao, A. Rautiainen, S. Sitch, D. Hayes (2011)
A Large and Persistent Carbon Sink in the World’s ForestsScience, 333
B. Hungate, J. Dukes, M. Shaw, Yiqi Luo, C. Field (2003)
Nitrogen and Climate ChangeScience, 302
R. Betts, P. Cox, M. Collins, P. Harris, C. Huntingford, C. Jones (2004)
The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warmingTheoretical and Applied Climatology, 78
G. Zotz, S. Pepin, C. Körner (2005)
No down-regulation of leaf photosynthesis in mature forest trees after three years of exposure to elevated CO2.Plant biology, 7 4
B. Medlyn, S. Zaehle, M. Kauwe, A. Walker, M. Dietze, P. Hanson, T. Hickler, Atul Jain, Yiqi Luo, W. Parton, I. Prentice, P. Thornton, Shusen Wang, Ying‐ping Wang, Ensheng Weng, C. Iversen, H. McCarthy, J. Warren, R. Oren, R. Norby (2015)
Using ecosystem experiments to improve vegetation modelsNature Climate Change, 5
O. Franklin, Jacob Johansson, R. Dewar, U. Dieckmann, R. McMurtrie, Å. Brännström, R. Dybzinski (2012)
Modeling carbon allocation in trees: a search for principles.Tree physiology, 32 6
P. Ciais, M. Schelhaas, S. Zaehle, S. Piao, A. Cescatti, J. Liski, S. Luyssaert, G. Le-Maire, E. Schulze, O. Bouriaud, A. Freibauer, R. Valentini, G. Nabuurs (2008)
Carbon accumulation in European forestsNature Geoscience, 1
W. Cramer, A. Bondeau, F. Woodward, I. Prentice, R. Betts, V. Brovkin, P. Cox, Veronica Fisher, J. Foley, A. Friend, C. Kucharik, M. Lomas, N. Ramankutty, S. Sitch, Benjamin Smith, A. White, C. Young-Molling (2001)
Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation modelsGlobal Change Biology, 7
M. Ryan (2013)
Three decades of research at Flakaliden advancing whole-tree physiology, forest ecosystem and global change research.Tree physiology, 33 11
J. Randerson, F. Hoffman, P. Thornton, N. Mahowald, K. Lindsay, Yen-Huei Lee, C. Nevison, S. Doney, G. Bonan, R. Stöckli, C. Covey, S. Running, I. Fung (2009)
Systematic assessment of terrestrial biogeochemistry in coupled climate–carbon modelsGlobal Change Biology, 15
R. Grote, H. Pretzsch (2002)
A Model for Individual Tree Development Based on Physiological ProcessesPlant Biology, 4
Lucas Silva, M. Anand (2013)
Probing for the influence of atmospheric CO2 and climate change on forest ecosystems across biomesGlobal Ecology and Biogeography, 22
T. Keenan, Josep SERRA, F. Lloret, M. Ninyerola, S. Sabaté (2011)
Predicting the future of forests in the Mediterranean under climate change, with niche‐ and process‐based models: CO2 matters!Global Change Biology, 17
P. Thornton, J. Lamarque, N. Rosenbloom, N. Mahowald (2007)
Influence of carbon‐nitrogen cycle coupling on land model response to CO2 fertilization and climate variabilityGlobal Biogeochemical Cycles, 21
Process-based models are important tools for understanding the dynamics and functioning of forest ecosystems. In nearly all models, forest productivity is largely driven by carbon (C) input via photosynthesis, which reacts strongly positive to elevated CO2 (eCO2). The simulated increases in forest productivity in terms of wood production, however, have been much higher than experimental and observational evidence suggests, at least in those models that did not account for nutrient limitations. Experimental results show that in most investigated systems, eCO2 leads to increasing allocation of C below ground, without sustained enhancements of wood production. This translocation of C below ground, which also enhances nutrient uptake, appears to be larger than simulated in our current models. However, because of a lack of experimental data from real ecosystems, in particular from the tropics, the big question remains unresolved whether increasing levels of CO2 have and will lead to substantially increased forest productivity in terms of stand-level wood increment. To reduce the uncertainties, it will be necessary to develop new theory, implement that in models, and rigorously compare model results with observations. They range from physiological measurements, results from “free air CO2 enrichment” experiments to forest inventories, tree rings and 13C analyses (as a proxy for changes in water use efficiency). Key issues that should be addressed in the models include the coupling of C and nutrient cycles, limitations to the C sink capacity of trees, dynamic changes in allocation, and potential feedbacks from tree population dynamics on stand productivity.
Current Forestry Reports – Springer Journals
Published: Apr 15, 2015
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.