Access the full text.
Sign up today, get DeepDyve free for 14 days.
[In this chapter, multicast capacity-delay tradeoff of the wireless network combining mobile wireless nodes with base stations is studied. m=nb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m = n^b$$\end{document} base stations are located in a square region and divide it into m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document} super cells according to their coverage. Their transmission power is large enough to directly transmit to any nodes in the same super cell. We further assume that mobile nodes move in an independently and identically distributed (i.i.d.) pattern and each wants to send packets to k=nd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k = n^d$$\end{document} distinctive destinations. Packets are delivered to destinations or base stations via node’s mobility. Under this model, we study capacity, delay and their tradeoff in three transmission protocols: one uses two-hop relay algorithm without redundancy, another adopts the scheme of redundant packets transmissions to improve delay, and the third one cancels the constriction of 2-hop. The upper bound of per-node throughput of 2-hop relay algorithm without redundancy is O(n−min{1,1−b+d})\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{-\min \{1, 1 - b + d\}})$$\end{document} and its delay is Θ(nmin{1,1−b+d})\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varTheta (n^{\min \{1, 1 - b + d\}})$$\end{document}. The lower bound is Θ(n1−b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varTheta (n^{1-b})$$\end{document}, with a smaller capacity O(nb−2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{b-2})$$\end{document}. It obtains a better tradeoff than using ad-hoc only in [4] when k=Θ(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k = \varTheta (n)$$\end{document} or b>min{1+d2,2−d2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b > \min \{\frac{1+d}{2}, \frac{2 - d}{2}\}$$\end{document}. For two-hop relay algorithm with redundancy, the biggest capacity and its corresponding delay are O(n−min{1,1−b+d})\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{-\min \{1, 1 - b + d\}})$$\end{document} and Θ(nmin{1,1−b+d}2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varTheta (n^{\frac{\min \{1, 1 - b + d\}}{2}})$$\end{document}. The smallest delay and the related capacity are Θ(n1−b2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varTheta (n^{\frac{1 - b}{2}})$$\end{document} and O(nb−32)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{\frac{b - 3}{2}})$$\end{document}. When d>12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d > \frac{1}{2}$$\end{document} or b>min{1+d3,1−d}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b > \min \{\frac{1+d}{3}, 1 - d\}$$\end{document}, adding base stations will enhance the tradeoff mentioned in [4]. As to multi-hop relay algorithm with redundancy, if m=Θ(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m = \varTheta (n)$$\end{document}, we prefer passing through base stations to ad-hoc only.]
Published: Jan 23, 2013
Keywords: Mobile Nodes; Relay Algorithm; Adding Base Stations; Random Walk Mobility; Source Node Need
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.