Access the full text.
Sign up today, get DeepDyve free for 14 days.
This study focuses on maximizing hovering thrust and minimizing the power consumption of a quad-copter system at the same time by conducting multi-dimensional optimization of aerodynamic blade shapes. This work examines geometrical design variables for blades that influence thrusts, and the lift and drag (L&D) forces are calculated based on shape changes using computational fluid dynamics (CFD). Based on both L&D forces obtained from CFD, surrogate models are generated using the response surface method (RSM). The non-dominated sorting genetic algorithm (NSGA-II) is employed to acquire optimal blade shapes. Seven alternative shape combinations are obtained from the optimal combination obtained by the NSGA-II, each with a different L and D force value. These blades are printed engines via additive manufacturing, and a thrust test is conducted to measure power consumption using a voltmeter. As a result, it was possible to derive optimal blade shape combinations that can be chosen according to the flight conditions, and one can see that the predicted flight (i.e., an operating motor of a rotor blade) time by the analytical equation to identify battery specs is a good agreement with the actual battery consumption time measured via the thrust test.
International Journal of Aeronautical and Space Sciences – Springer Journals
Published: Jul 1, 2023
Keywords: Quad-copter system; Multi-dimensional optimization; Computational fluid dynamics (CFD); Non-dominated sorting genetic algorithm (NSGA-II); Thrust test
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.