Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Multi-stream adaptive 3D attention graph convolution network for skeleton-based action recognition

Multi-stream adaptive 3D attention graph convolution network for skeleton-based action recognition Action recognition methods based on spatial-temporal skeleton graphs have been applied extensively. The spatial and temporal graphs are generally modeled individually in previous approaches. Recently, many researchers capture the correlation information of temporal and spatial dimensions in spatial-temporal graphs. However, the existing methods have several issues such as 1. The existing modal graphs are defined based on the human body structure which is not flexible enough; 2. The approach to extracting non-local neighborhood features is insufficiently powerful; 3. Attention modules are limited to a single scale; 4. The fusion of multiple data streams is not sufficiently effective. This work proposes a novel multi-stream adaptive 3D attention graph convolution network for skeleton-based action recognition that improves the aforementioned issues. The method utilizes an adaptive topology graph with an adaptive connection coefficient to adaptively optimize the topology of the graph during the training process according to the input data. An optimal high-order adjacency matrix is constructed in our work to balance the weight bias, which captures non-local neighborhood features precisely. Moreover, we design a multi-scale attention mechanism to aggregate information from multiple ranges, which makes the graph convolution focus on more efficient nodes, frames, and channels. To further improve the performance of the model, a novel multi-stream framework is proposed to aggregate the high-order information of the skeleton. The experiment results on the NTU-RGBD and Kinetics-Skeleton prove that our proposed method reveals better results than existing methods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Intelligence Springer Journals

Multi-stream adaptive 3D attention graph convolution network for skeleton-based action recognition

Loading next page...
 
/lp/springer-journals/multi-stream-adaptive-3d-attention-graph-convolution-network-for-c06DbJNsro

References (28)

Publisher
Springer Journals
Copyright
Copyright © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
ISSN
0924-669X
eISSN
1573-7497
DOI
10.1007/s10489-022-04179-8
Publisher site
See Article on Publisher Site

Abstract

Action recognition methods based on spatial-temporal skeleton graphs have been applied extensively. The spatial and temporal graphs are generally modeled individually in previous approaches. Recently, many researchers capture the correlation information of temporal and spatial dimensions in spatial-temporal graphs. However, the existing methods have several issues such as 1. The existing modal graphs are defined based on the human body structure which is not flexible enough; 2. The approach to extracting non-local neighborhood features is insufficiently powerful; 3. Attention modules are limited to a single scale; 4. The fusion of multiple data streams is not sufficiently effective. This work proposes a novel multi-stream adaptive 3D attention graph convolution network for skeleton-based action recognition that improves the aforementioned issues. The method utilizes an adaptive topology graph with an adaptive connection coefficient to adaptively optimize the topology of the graph during the training process according to the input data. An optimal high-order adjacency matrix is constructed in our work to balance the weight bias, which captures non-local neighborhood features precisely. Moreover, we design a multi-scale attention mechanism to aggregate information from multiple ranges, which makes the graph convolution focus on more efficient nodes, frames, and channels. To further improve the performance of the model, a novel multi-stream framework is proposed to aggregate the high-order information of the skeleton. The experiment results on the NTU-RGBD and Kinetics-Skeleton prove that our proposed method reveals better results than existing methods.

Journal

Applied IntelligenceSpringer Journals

Published: Jun 1, 2023

Keywords: Graph convolution; Convolutional Neural Network; Adaptive; Attention module; Action recognition

There are no references for this article.