Access the full text.
Sign up today, get DeepDyve free for 14 days.
We consider the integro-differential problem (P): -a+b∫RN|∇u|pdxp-1Δpu+V(x)|u|p-2u=f(x,u),x∈RN,\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\begin{aligned} -\left( a+b\left( \int _{\mathbb {R}^{N}}|\nabla u|^{p} \textrm{d} x\right) ^{p-1}\right) \Delta _{p} u +V(x)|u|^{p-2} u =f(x,u), \quad x\in \mathbb {R}^{N}, \end{aligned}$$\end{document}with |u(x)|⟶0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$|u(x)| \longrightarrow 0$$\end{document}, as |x|⟶+∞\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$|x| \longrightarrow +\infty $$\end{document}. We assume that a,b>0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$a, b>0$$\end{document}, N≥2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$N \ge 2$$\end{document}, 1<p<N<+∞\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$1<p< N < +\infty $$\end{document}, V∈C(RN)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$V\in \textrm{C}^{}(\mathbb {R}^{N})$$\end{document} with inf(V)>0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\inf (V)>0$$\end{document}, and that f:RN×R⟶R\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$f:\mathbb {R}^{N}\times \mathbb {R}\longrightarrow \mathbb {R}$$\end{document} verifies conditions introduced by Duan and Huang. We prove the existence of a non-trivial ground state solution and, by a Ljusternik–Schnirelman scheme, the existence of infinitely many non-trivial solutions.
Annals of Functional Analysis – Springer Journals
Published: Apr 1, 2023
Keywords: p-Schrödinger–Kirchhoff-type equation; Ljusternik–Schnirelman theory; Critical point theory; 45K05; 35J60
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.