Access the full text.
Sign up today, get DeepDyve free for 14 days.
S. Seal, Deborah Thompson, A. Renwick, Anna Elliott, P. Kelly, R. Barfoot, T. Chagtai, H. Jayatilake, Munaza Ahmed, Katarina Spanova, B. North, L. McGuffog, D. Evans, D. Eccles, D. Easton, M. Stratton, N. Rahman, The Collaboration (2006)
Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility allelesNature Genetics, 38
M. Wong, Cecilia Nordfors, D. Mossman, G. Pecenpetelovska, K. Avery-Kiejda, B. Talseth-Palmer, N. Bowden, R. Scott (2011)
BRIP1, PALB2, and RAD51C mutation analysis reveals their relative importance as genetic susceptibility factors for breast cancerBreast Cancer Research and Treatment, 127
D. Easton, A. Deffenbaugh, D. Pruss, Cynthia Frye, R. Wenstrup, K. Allen-Brady, S. Tavtigian, A. Monteiro, E. Iversen, F. Couch, D. Goldgar (2007)
A systematic genetic assessment of 1,433 sequence variants of unknown clinical significance in the BRCA1 and BRCA2 breast cancer-predisposition genes.American journal of human genetics, 81 5
E. Thompson, Samantha Boyle, Julie Johnson, Julie Johnson, G. Ryland, G. Ryland, Sara Sawyer, David Choong, G. Chenevix-Trench, A. Trainer, Geoff Lindeman, Geoff Lindeman, Gillian Mitchell, Paul James, Ian Campbell (2012)
Analysis of RAD51C germline mutations in high-risk breast and ovarian cancer families and ovarian cancer patientsHereditary Cancer in Clinical Practice, 10
A. Romero, P. Pérez-Segura, A. Tosar, J. García-Saenz, E. Díaz-Rubio, T. Caldés, Miguel Hoya (2011)
A HRM-based screening method detects RAD51C germ-line deleterious mutations in Spanish breast and ovarian cancer familiesBreast Cancer Research and Treatment, 129
Yonglan Zheng, Jing Zhang, K. Hope, Q. Niu, D. Huo, O. Olopade (2010)
Screening RAD51C nucleotide alterations in patients with a family history of breast and ovarian cancerBreast Cancer Research and Treatment, 124
Clare Turnbull, Nazneen Rahman (2008)
Genetic predisposition to breast cancer: past, present, and future.Annual review of genomics and human genetics, 9
A. Antoniou, A. Cunningham, J. Peto, D. Evans, F. Lalloo, S. Narod, H. Risch, J. Eyfjord, J. Hopper, M. Southey, Hampus Olsson, O. Johannsson, Å. Borg, B. Pasini, P. Radice, S. Manoukian, D. Eccles, N. Tang, E. Oláh, H. Anton-Culver, E. Warner, J. Lubiński, J. Gronwald, B. Górski, L. Tryggvadottir, K. Syrjäkoski, O. Kallioniemi, H. Eerola, H. Nevanlinna, P. Pharoah, D. Easton (2008)
The BOADICEA model of genetic susceptibility to breast and ovarian cancers: updates and extensionsBritish Journal of Cancer, 98
D. Malkin, F. Li, L. Strong, J. Fraumeni, C. Nelson, D. Kim, J. Kassel, M. Gryka, F. Bischoff, M. Tainsky (1990)
Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms.Science, 250 4985
F. Vaz, H. Hanenberg, B. Schuster, K. Barker, C. Wiek, Verena Erven, K. Neveling, D. Endt, I. Kesterton, Flavia Autore, F. Fraternali, M. Freund, Linda Hartmann, D. Grimwade, R. Roberts, H. Schaal, S. Mohammed, N. Rahman, D. Schindler, C. Mathew (2010)
Mutation of the RAD51C gene in a Fanconi anemia–like disorderNature Genetics, 42
J. Clague, Greggory Wilhoite, A. Adamson, A. Bailis, J. Weitzel, S. Neuhausen (2011)
RAD51C Germline Mutations in Breast and Ovarian Cancer Cases from High-Risk FamiliesPLoS ONE, 6
S. Tavtigian, M. Greenblatt, F. Lesueur, G. Byrnes (2008)
In silico analysis of missense substitutions using sequence‐alignment based methodsHuman Mutation, 29
J. Masson, M. Tarsounas, A. Stasiak, A. Stasiak, Rajvee Shah, M. McIlwraith, F. Benson, S. West (2001)
Identification and purification of two distinct complexes containing the five RAD51 paralogs.Genes & development, 15 24
A. Broeks, J. Urbanus, A. Floore, Ellen Dahler, J. Klijn, E. Rutgers, P. Devilee, N. Russell, F. Leeuwen, L. Veer (2000)
ATM-heterozygous germline mutations contribute to breast cancer-susceptibility.American journal of human genetics, 66 2
C. Loveday, C. Turnbull, Emma Ramsay, D. Hughes, Elise Ruark, J. Frankum, Georgina Bowden, B. Kalmyrzaev, M. Warren-Perry, K. Snape, J. Adlard, J. Barwell, J. Berg, A. Brady, C. Brewer, G. Brice, C. Chapman, J. Cook, R. Davidson, A. Donaldson, F. Douglas, L. Greenhalgh, A. Henderson, L. Izatt, Ajith Kumar, F. Lalloo, Z. Miedzybrodzka, Patrick Morrison, J. Paterson, M. Porteous, M. Rogers, S. Shanley, L. Walker, D. Eccles, D. Evans, A. Renwick, S. Seal, C. Lord, A. Ashworth, J. Reis-Filho, A. Antoniou, N. Rahman (2011)
Germline mutations in RAD51D confer susceptibility to ovarian cancerNature Genetics, 43
Liisa Pelttari, T. Heikkinen, D. Thompson, A. Kallioniemi, J. Schleutker, K. Holli, C. Blomqvist, K. Aittomäki, R. Bützow, H. Nevanlinna (2011)
RAD51C is a susceptibility gene for ovarian cancer.Human molecular genetics, 20 16
A. Meindl, H. Hellebrand, C. Wiek, Verena Erven, B. Wappenschmidt, D. Niederacher, M. Freund, P. Lichtner, Linda Hartmann, H. Schaal, J. Ramser, E. Honisch, C. Kubisch, H. Wichmann, K. Kast, H. Deissler, C. Engel, B. Müller-Myhsok, K. Neveling, M. Kiechle, C. Mathew, D. Schindler, R. Schmutzler, H. Hanenberg (2010)
Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility geneNature Genetics, 42
N. Lindor, L. Guidugli, Xianshu Wang, M. Vallée, A. Monteiro, S. Tavtigian, D. Goldgar, F. Couch (2012)
A review of a multifactorial probability‐based model for classification of BRCA1 and BRCA2 variants of uncertain significance (VUS)Human Mutation, 33
N. Rahman, S. Seal, D. Thompson, P. Kelly, A. Renwick, Anna Elliott, S. Reid, Katarina Spanova, R. Barfoot, T. Chagtai, H. Jayatilake, L. McGuffog, S. Hanks, D. Evans, D. Eccles, D. Easton, Michael Stratton (2007)
PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility geneNature Genetics, 39
J. Masson, A. Stasiak, A. Stasiak, F. Benson, S. West (2001)
Complex formation by the human RAD51C and XRCC3 recombination repair proteinsProceedings of the National Academy of Sciences of the United States of America, 98
K. Heikkinen, K. Rapakko, S. Karppinen, H. Erkko, S. Knuutila, T. Lundán, A. Mannermaa, A. Børresen-Dale, Å. Borg, R. Barkardottir, J. Petrini, R. Winqvist (2005)
RAD50 and NBS1 are breast cancer susceptibility genes associated with genomic instability.Carcinogenesis, 27 8
Valentina Silvestri, P. Rizzolo, M. Falchetti, I. Zanna, G. Masala, D. Palli, L. Ottini (2011)
Mutation screening of RAD51C in male breast cancer patientsBreast Cancer Research : BCR, 13
Mikko Vuorela, K. Pylkäs, J. Hartikainen, K. Sundfeldt, A. Lindblom, Anna Wäppling, M. Haanpää, U. Puistola, A. Rosengren, M. Anttila, V. Kosma, A. Mannermaa, R. Winqvist (2011)
Further evidence for the contribution of the RAD51C gene in hereditary breast and ovarian cancer susceptibilityBreast Cancer Research and Treatment, 130
K. Heikkinen, S. Karppinen, Y. Soini, M. Mäkinen, R. Winqvist (2003)
Mutation screening of Mre11 complex genes: indication of RAD50 involvement in breast and ovarian cancer susceptibilityJournal of Medical Genetics, 40
M. Akbari, P. Tonin, W. Foulkes, P. Ghadirian, M. Tischkowitz, S. Narod (2010)
RAD51C germline mutations in breast and ovarian cancer patientsBreast Cancer Research : BCR, 12
Zhiyuan Pang, L. Yao, Juan Zhang, Ouyang Tao, Jin-feng Li, Tian-feng Wang, Z. Fan, T. Fan, B. Lin, Yuntao Xie (2011)
RAD51C germline mutations in Chinese women with familial breast cancerBreast Cancer Research and Treatment, 129
Deleterious mutations in the RAD51C gene, which encodes a DNA double-strand break repair protein, have been reported to confer high-penetrance susceptibility to both breast and ovarian cancer. To confirm this we conducted a mutation screen of the RAD51C gene in 192 probands from high-risk breast and/or ovarian cancer families that do not carry BRCA1 or BRCA2 mutations. The nine exons of the RAD51C gene containing protein coding sequence were screened for mutations in genomic DNA from family probands by high-resolution melting analysis and direct DNA sequencing. Four missense variants, p.Ser364Gly, p.Ala126Thr, p.Val169Ala, and p.Thr287Ala were detected in six patients. The p.Ser364Gly variant is a novel variant predicted to have little influence on RAD51C activity. The p.Ala126Thr and p.Val169Ala variants have been reported to have no association with risk of breast cancer in a case–control study. However, p.Thr287Ala disrupts the DNA repair activity of RAD51C, suggesting some influence on risk. Consistent with published results from similar follow-up studies, we suggest that RAD51C mutations are rare events among high-risk breast cancer and breast/ovarian cancer families. Large population-based studies will be needed to reliably assess the prevalence and penetrance of inactivating mutations in the RAD51C susceptibility gene.
Familial Cancer – Springer Journals
Published: Apr 4, 2012
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.